Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurie L. Molday is active.

Publication


Featured researches published by Laurie L. Molday.


Nature Genetics | 2000

ABCR expression in foveal cone photoreceptors and its role in stargardt macular dystrophy

Laurie L. Molday; Arnold R. Rabin; Robert S. Molday

Mutations in the gene encoding ABCR are responsible for Stargardt macular dystrophy. Here we show by immunofluorescence microscopy and western-blot analysis that ABCR is present in foveal and peripheral cone, as well as rod, photoreceptors. Our results suggest that the loss in central vision experienced by Stargardt patients arises directly from ABCR-mediated foveal cone degeneration.


Nature | 2002

The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B stoichiometry

Haining Zhong; Laurie L. Molday; Robert S. Molday; King Wai Yau

Cyclic nucleotide-gated (CNG) channels are crucial for visual and olfactory transductions. These channels are tetramers and in their native forms are composed of A and B subunits, with a stoichiometry thought to be 2A:2B (refs 6, 7). Here we report the identification of a leucine-zipper-homology domain named CLZ (for carboxy-terminal leucine zipper). This domain is present in the distal C terminus of CNG channel A subunits but is absent from B subunits, and mediates an inter-subunit interaction. With cross-linking, non-denaturing gel electrophoresis and analytical centrifugation, this CLZ domain was found to mediate a trimeric interaction. In addition, a mutant cone CNG channel A subunit with its CLZ domain replaced by a generic trimeric leucine zipper produced channels that behaved much like the wild type, but less so if replaced by a dimeric or tetrameric leucine zipper. This A-subunit-only, trimeric interaction suggests that heteromeric CNG channels actually adopt a 3A:1B stoichiometry. Biochemical analysis of the purified bovine rod CNG channel confirmed this conclusion. This revised stoichiometry provides a new foundation for understanding the structure and function of the CNG channel family.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Inactivation of the murine X-linked juvenile retinoschisis gene, Rs1h, suggests a role of retinoschisin in retinal cell layer organization and synaptic structure

Bernhard H. F. Weber; Heinrich Schrewe; Laurie L. Molday; Andrea Gehrig; Karen L. White; Mathias W. Seeliger; Gesine B. Jaissle; Christoph Friedburg; Ernst R. Tamm; Robert S. Molday

Deleterious mutations in RS1 encoding retinoschisin are associated with X-linked juvenile retinoschisis (RS), a common form of macular degeneration in males. The disorder is characterized by a negative electroretinogram pattern and by a splitting of the inner retina. To gain further insight into the function of the retinoschisin protein and its role in the cellular pathology of RS, we have generated knockout mice deficient in Rs1h, the murine ortholog of the human RS1 gene. We show that pathologic changes in hemizygous Rs1h−/Y male mice are evenly distributed across the retina, apparently contrasting with the macula-dominated features in human. Similar functional anomalies in human and Rs1h−/Y mice, however, suggest that both conditions are a disease of the entire retina affecting the organization of the retinal cell layers as well as structural properties of the retinal synapse.


Journal of Biological Chemistry | 2001

The cGMP-gated channel and related glutamic acid-rich proteins interact with peripherin-2 at the rim region of rod photoreceptor disc membranes.

Ansgar Poetsch; Laurie L. Molday; Robert S. Molday

The rod cGMP-gated channel is localized in the plasma membrane of rod photoreceptor outer segments, where it plays a central role in phototransduction. It consists of α- and β-subunits that assemble into a heterotetrameric protein. Each subunit contains structural features characteristic of nucleotide-gated channels, including a cGMP-binding domain, multiple membrane-spanning segments, and a pore region. In addition, the β-subunit has a large glutamic acid- and proline-rich region called GARP that is also expressed as two soluble protein variants. Using monoclonal antibodies in conjunction with immunoprecipitation, cross-linking, and electrophoretic techniques, we show that the cGMP-gated channel associates with the Na/Ca-K exchanger in the rod outer segment plasma membrane. This complex and soluble GARP proteins also interact with peripherin-2 oligomers in the rim region of outer segment disc membranes. These results suggest that channel/peripherin protein interactions mediated by the GARP part of the channel β-subunit play a role in connecting the rim region of discs to the plasma membrane and in anchoring the channel·exchanger complex in the rod outer segment plasma membrane.


Nature Genetics | 2000

Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis.

Geoff Clarke; Andrew F.X. Goldberg; Danka Vidgen; Leslie Collins; Lynda Ploder; Lois Schwarz; Laurie L. Molday; Janet Rossant; Ágoston Szél; Robert S. Molday; David G. Birch; Roderick R. McInnes

The homologous membrane proteins Rom-1 and peripherin-2 are localized to the disk rims of photoreceptor outer segments (OSs), where they associate as tetramers and larger oligomers. Disk rims are thought to be critical for disk morphogenesis, OS renewal and the maintenance of OS structure, but the molecules which regulate these processes are unknown. Although peripherin-2 is known to be required for OS formation (because Prph2−/− mice do not form OSs; ref. 6), and mutations in RDS (the human homologue of Prph2) cause retinal degeneration, the relationship of Rom-1 to these processes is uncertain. Here we show that Rom1−/− mice form OSs in which peripherin-2 homotetramers are localized to the disk rims, indicating that peripherin-2 alone is sufficient for both disk and OS morphogenesis. The disks produced in Rom1−/− mice were large, rod OSs were highly disorganized (a phenotype which largely normalized with age) and rod photoreceptors died slowly by apoptosis. Furthermore, the maximal photoresponse of Rom1−/− rod photoreceptors was lower than that of controls. We conclude that Rom-1 is required for the regulation of disk morphogenesis and the viability of mammalian rod photoreceptors, and that mutations in human ROM1 may cause recessive photoreceptor degeneration.


Journal of Biological Chemistry | 2001

Membrane Topology of the ATP Binding Cassette Transporter ABCR and Its Relationship to ABC1 and Related ABCA Transporters IDENTIFICATION OF N-LINKED GLYCOSYLATION SITES

Stefanie Bungert; Laurie L. Molday; Robert S. Molday

ABCR is a member of the ABCA subclass of ATP binding cassette transporters that is responsible for Stargardt macular disease and implicated in retinal transport across photoreceptor disc membranes. It consists of a single polypeptide chain arranged in two tandem halves, each having a multi-spanning membrane domain followed by a nucleotide binding domain. To delineate between several proposed membrane topological models, we have identified the exocytoplasmic (extracellular/lumen) N-linked glycosylation sites on ABCR. Using trypsin digestion, site-directed mutagenesis, concanavalin A binding, and endoglycosidase digestion, we show that ABCR contains eight glycosylation sites. Four sites reside in a 600-amino acid exocytoplasmic domain of the N-terminal half between the first transmembrane segment H1 and the first multi-spanning membrane domain, and four sites are in a 275-amino acid domain of the C half between transmembrane segment H7 and the second multi-spanning membrane domain. This leads to a model in which each half has a transmembrane segment followed by a large exocytoplasmic domain, a multi-spanning membrane domain, and a nucleotide binding domain. Other ABCA transporters, including ABC1 linked to Tangier disease, are proposed to have a similar membrane topology based on sequence similarity to ABCR. Studies also suggest that the N and C halves of ABCR are linked through disulfide bonds.


Journal of Biological Chemistry | 2007

Retinoschisin (RS1), the Protein Encoded by the X-linked Retinoschisis Gene, Is Anchored to the Surface of Retinal Photoreceptor and Bipolar Cells through Its Interactions with a Na/K ATPase-SARM1 Complex *

Laurie L. Molday; Winco W. H. Wu; Robert S. Molday

Retinoschisin or RS1 is a discoidin domain-containing protein encoded by the gene responsible for X-linked retinoschisis (XLRS), an early onset macular degeneration characterized by a splitting of the retina. Retinoschisin, expressed and secreted from photoreceptors and bipolar cells as a homo-octameric complex, associates with the surface of these cells where it serves to maintain the cellular organization of the retina and the photoreceptor-bipolar synaptic structure. To gain insight into the role of retinoschisin in retinal cell adhesion and the pathogenesis of XLRS, we have investigated membrane components in retinal extracts that interact with retinoschisin. Unlike the discoidin domain-containing blood coagulation proteins Factor V and Factor VIII, retinoschisin did not bind to phospholipids or retinal lipids reconstituted into unilamellar vesicles or immobilized on microtiter plates. Instead, co-immunoprecipitation studies together with mass spectrometric-based proteomics and Western blotting showed that retinoschisin is associated with a complex consisting of Na/K ATPase (α3, β2 isoforms) and the sterile alpha and TIR motif-containing protein SARM1. Double labeling studies for immunofluorescence microscopy confirmed the co-localization of retinoschisin with Na/K ATPase and SARM1 in photoreceptors and bipolar cells of retina tissue. We conclude that retinoschisin binds to Na/K ATPase on photoreceptor and bipolar cells. This interaction may be part of a novel SARM1-mediated cell signaling pathway required for the maintenance of retinal cell organization and photoreceptor-bipolar synaptic structure.


Molecular Therapy | 2008

Effect of Late-stage Therapy on Disease Progression in AAV-mediated Rescue of Photoreceptor Cells in the Retinoschisin-deficient Mouse

Andreas Janssen; Seok Hong Min; Laurie L. Molday; Naoyuki Tanimoto; Mathias W. Seeliger; William W. Hauswirth; Robert S. Molday; Bernhard H. F. Weber

Proof-of-concept for a successful adeno-associated virus serotype 5 (AAV5)-mediated gene therapy in X-linked juvenile retinoschisis (XLRS) has been demonstrated in an established mouse model for this condition. The initial studies concentrated on early time-points of treatment. In this study, we aimed to explore the consequences of single subretinal injections administered at various stages of more advanced disease. By electroretinogram (ERG), functional improvement in treated versus untreated eyes is found to be significant in retinoschisin-deficient mice injected at the time-points of 15 days (P15), 1 month (PM1), and 2 months (PM2) after birth. In mice treated at 7 months after birth (PM7), an age previously shown to exhibit advanced retinal disease, ERG responses reveal no beneficial effects of vector treatment. Generally, functional rescue is paralleled by sustained retinoschisin expression and significant photoreceptor survival relative to untreated eyes. Quantitative measures of photoreceptors and peanut agglutinin-labeled ribbon synapses demonstrate rescue effects even in mice injected as late as PM7. Taken together, AAV5-mediated gene replacement is beneficial in slowing disease progression in murine XLRS. In addition, we show the effectiveness of rescue efforts even if treatment is delayed until advanced signs of disease have developed. Human XLRS patients might benefit from these findings, which suggest that the effectiveness of treatment appears not to be restricted to the early stages of the disease, and that treatment may prove to be valuable even when administered at more advanced stages.


Journal of Cell Science | 2009

Knockout of GARPs and the β-subunit of the rod cGMP-gated channel disrupts disk morphogenesis and rod outer segment structural integrity

Youwen Zhang; Laurie L. Molday; Robert S. Molday; Shanta Sarfare; Michael L. Woodruff; Gordon L. Fain; Timothy W. Kraft; Steven J. Pittler

Ion flow into the rod photoreceptor outer segment (ROS) is regulated by a member of the cyclic-nucleotide-gated cation-channel family; this channel consists of two subunit types, α and β. In the rod cells, the Cngb1 locus encodes the channel β-subunit and two related glutamic-acid-rich proteins (GARPs). Despite intensive research, it is still unclear why the β-subunit and GARPs are coexpressed and what function these proteins serve. We hypothesized a role for the proteins in the maintenance of ROS structural integrity. To test this hypothesis, we created a Cngb1 5′-knockout photoreceptor null (Cngb1-X1). Morphologically, ROSs were shorter and, in most rods that were examined, some disks were misaligned, misshapen and abnormally elongated at periods when stratification was still apparent and degeneration was limited. Additionally, a marked reduction in the level of channel α-subunit, guanylate cyclase I (GC1) and ATP-binding cassette transporter (ABCA4) was observed without affecting levels of other ROS proteins, consistent with a requirement for the β-subunit in channel assembly or targeting of select proteins to ROS. Remarkably, phototransduction still occurred when only trace levels of homomeric α-subunit channels were present, although rod sensitivity and response amplitude were both substantially reduced. Our results demonstrate that the β-subunit and GARPs are necessary not only to maintain ROS structural integrity but also for normal disk morphogenesis, and that the β-subunit is required for normal light sensitivity of the rods.


Proceedings of the National Academy of Sciences of the United States of America | 2010

RD3, the protein associated with Leber congenital amaurosis type 12, is required for guanylate cyclase trafficking in photoreceptor cells

Seifollah Azadi; Laurie L. Molday; Robert S. Molday

Guanylate cyclases, GC1 and GC2, are localized in the light-sensitive outer segment compartment of photoreceptor cells, where they play a crucial role in phototransduction by catalyzing the synthesis of cGMP, the second messenger of phototransduction, and regulating intracellular Ca2+ levels in combination with the cGMP-gated channel. Mutations in GC1 are known to cause Leber congenital amaurosis type 1 (LCA1), a childhood disease associated with severe vision loss. Although the enzymatic and regulatory properties of guanylate cyclases have been studied extensively, the molecular determinants responsible for their trafficking in photoreceptors remain unknown. Here we show that RD3, a protein of unknown function encoded by a gene associated with photoreceptor degeneration in humans with Leber congenital amaurosis type 12 (LCA12), the rd3 mouse, and rcd2 collie, colocalizes and interacts with GC1 and GC2 in rod and cone photoreceptor cells of normal mice. GC1 and GC2 are undetectable in photoreceptors of the rd3 mouse deficient in RD3 by immunofluorescence microscopy. Cell expression studies show that RD3 mediates the export of GC1 from the endoplasmic reticulum to endosomal vesicles, and that the C terminus of GC1 is required for RD3 binding. Our results indicate that photoreceptor degeneration in the rd3 mouse, rcd2 dog, and LCA12 patients is caused by impaired RD3-mediated guanylate cyclase expression and trafficking. The resulting deficiency in cGMP synthesis and the constitutive closure of cGMP-gated channels might cause a reduction in intracellular Ca2+ to a level below that required for long-term photoreceptor cell survival.

Collaboration


Dive into the Laurie L. Molday's collaboration.

Top Co-Authors

Avatar

Robert S. Molday

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan A. Coleman

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven J. Pittler

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Hidayat R. Djajadi

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Theresa Hii

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge