Lauro Sumoy
Pompeu Fabra University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lauro Sumoy.
European Journal of Neuroscience | 2003
Laura Carim-Todd; Mònica Escarceller; Xavier Estivill; Lauro Sumoy
Human chromosome 15q24‐q26 is a very complex genomic region containing several blocks of segmental duplications to which susceptibility to anxiety disorders has been mapped (Gratacos et al., 2001, Cell, 106, 367–379; Pujana et al., 2001, Genome Res., 11, 98–111). Through an in silico gene content analysis of the 15q24‐q26 region we have identifie1d a novel gene, LRRN6A (leucine‐rich repeat neuronal 6A), and confirmed its location to the centromeric end of this complex region. LRRN6A encodes a transmembrane leucine‐rich repeat protein, LERN1 (leucine‐rich repeat neuronal protein 1), with similarity to proteins involved in axonal guidance and migration, nervous system development and regeneration processes. The identification of homologous genes to LRRN6A on chromosomes 9 and 19 and the orthologous genes in the mouse genome and other organisms suggests that LERN proteins constitute a novel subfamily of LRR (leucine‐rich repeat)‐containing proteins. The LRRN6A expression pattern is specific to the central nervous system, highly and broadly expressed during early stages of development and gradually restricted to forebrain structures as development proceeds. Expression level in adulthood is lower in general but remains stable and significantly enriched in the limbic system and cerebral cortex. Taken together, the confirmation of LRRN6As expression profile, its predicted protein structure and its similarity to nervous system‐expressed LRR proteins with essential roles in nervous system development and maintenance suggest that LRRN6A is a novel gene of relevance in the molecular and cellular neurobiology of vertebrates.
Molecular and Cellular Biology | 2009
Joan-Marc Servitja; Miguel Pignatelli; Miguel Angel Maestro; Carina Cardalda; Sylvia F. Boj; Juanjo Lozano; Enrique Blanco; Amàlia Lafuente; Mark McCarthy; Lauro Sumoy; Roderic Guigó; Jorge Ferrer
ABSTRACT Heterozygous HNF1A mutations cause pancreatic-islet β-cell dysfunction and monogenic diabetes (MODY3). Hnf1α is known to regulate numerous hepatic genes, yet knowledge of its function in pancreatic islets is more limited. We now show that Hnf1a deficiency in mice leads to highly tissue-specific changes in the expression of genes involved in key functions of both islets and liver. To gain insights into the mechanisms of tissue-specific Hnf1α regulation, we integrated expression studies of Hnf1a-deficient mice with identification of direct Hnf1α targets. We demonstrate that Hnf1α can bind in a tissue-selective manner to genes that are expressed only in liver or islets. We also show that Hnf1α is essential only for the transcription of a minor fraction of its direct-target genes. Even among genes that were expressed in both liver and islets, the subset of targets showing functional dependence on Hnf1α was highly tissue specific. This was partly explained by the compensatory occupancy by the paralog Hnf1β at selected genes in Hnf1a-deficient liver. In keeping with these findings, the biological consequences of Hnf1a deficiency were markedly different in islets and liver. Notably, Hnf1a deficiency led to impaired large-T-antigen-induced growth and oncogenesis in β cells yet enhanced proliferation in hepatocytes. Collectively, these findings show that Hnf1α governs broad, highly tissue-specific genetic programs in pancreatic islets and liver and reveal key consequences of Hnf1a deficiency relevant to the pathophysiology of monogenic diabetes.
Molecular and Cellular Biology | 2012
Catherine Creppe; Peggy Janich; Neus Cantariño; Marc Noguera; Vanesa Valero; Eva Musulen; Julien Douet; Melanija Posavec; Juan Martín-Caballero; Lauro Sumoy; Luciano Di Croce; Marcus Buschbeck
ABSTRACT One of the most striking epigenetic alterations that occurs at the level of the nucleosome is the complete exchange of the canonical H2A histones for the macroH2A variant. Here, we provide insight into the poorly recognized function of macroH2A in transcriptional activation and demonstrate its relevance in embryonic and adult stem cells. Knockdown of macroH2A1 in mouse embryonic stem (mES) cells limited their capacity to differentiate but not their self-renewal. The loss of macroH2A1 interfered with the proper activation of differentiation genes, most of which are direct target genes of macroH2A. Additionally, macroH2A1-deficient mES cells displayed incomplete inactivation of pluripotency genes and formed defective embryoid bodies. In vivo, macroH2A1-deficient teratomas contained a massive expansion of malignant, undifferentiated carcinoma tissue. In the heterogeneous culture of primary human keratinocytes, macroH2A1 levels negatively correlated with the self-renewal capacity of the pluripotent compartment. Together these results establish macroH2A1 as a critical chromatin component that regulates the delicate balance between self-renewal and differentiation of embryonic and adult stem cells.
PLOS ONE | 2009
Alejandra Rangel; Noelia Madroñal; Agnès Gruart i Massó; Rosalina Gavín; Franc Llorens; Lauro Sumoy; Juan Maria Torres; José M. Delgado-García; José Antonio del Río
Background Prionopathies are characterized by spongiform brain degeneration, myoclonia, dementia, and periodic electroencephalographic (EEG) disturbances. The hallmark of prioniopathies is the presence of an abnormal conformational isoform (PrPsc) of the natural cellular prion protein (PrPc) encoded by the Prnp gene. Although several roles have been attributed to PrPc, its putative functions in neuronal excitability are unknown. Although early studies of the behavior of Prnp knockout mice described minor changes, later studies report altered behavior. To date, most functional PrPc studies on synaptic plasticity have been performed in vitro. To our knowledge, only one electrophysiological study has been performed in vivo in anesthetized mice, by Curtis and coworkers. They reported no significant differences in paired-pulse facilitation or LTP in the CA1 region after Schaffer collateral/commissural pathway stimulation. Methodology/Principal Findings Here we explore the role of PrPc expression in neurotransmission and neural excitability using wild-type, Prnp −/− and PrPc-overexpressing mice (Tg20 strain). By correlating histopathology with electrophysiology in living behaving mice, we demonstrate that both Prnp −/− mice but, more relevantly Tg20 mice show increased susceptibility to KA, leading to significant cell death in the hippocampus. This finding correlates with enhanced synaptic facilitation in paired-pulse experiments and hippocampal LTP in living behaving mutant mice. Gene expression profiling using Illumina™ microarrays and Ingenuity pathways analysis showed that 129 genes involved in canonical pathways such as Ubiquitination or Neurotransmission were co-regulated in Prnp −/− and Tg20 mice. Lastly, RT-qPCR of neurotransmission-related genes indicated that subunits of GABAA and AMPA-kainate receptors are co-regulated in both Prnp −/− and Tg20 mice. Conclusions/Significance Present results demonstrate that PrPc is necessary for the proper homeostatic functioning of hippocampal circuits, because of its relationships with GABAA and AMPA-Kainate neurotransmission. New PrPc functions have recently been described, which point to PrPc as a target for putative therapies in Alzheimers disease. However, our results indicate that a “gain of function” strategy in Alzheimers disease, or a “loss of function” in prionopathies, may impair PrPc function, with devastating effects. In conclusion, we believe that present data should be taken into account in the development of future therapies.
Developmental Neurobiology | 2008
Franc Llorens; Vanesa Gil; Susana Iraola; Laura Carim-Todd; Eulàlia Martí; Xavier Estivill; Eduardo Soriano; José Antonio del Río; Lauro Sumoy
Lingo‐1 (also known as Lern1) is a component of the Nogo receptor complex that mediates intracellular signaling in response to myelin associated inhibitors (MAIs): NogoA, MAG, and Omgp. Signaling through Nogo receptor extends to more than its well known role in preventing axon regeneration after lesion in the CNS, being implicated in neuronal functional maturation. Using Lingo‐1‐deficient mice, it has been demonstrated that Lingo‐1 plays relevant roles in oligodendrocyte differentiation during brain development, and that treatment with Lingo‐1 antagonists can improve axon regeneration after lesion in adult mice by decreasing MAI mediated signaling. However, a detailed description of the pattern of expression of Lingo‐1 protein in correlation with the other partners of Nogo receptor is missing. Here, we show that components of the Nogo receptor complex, Lingo‐1, NgR1, p75, and TROY coexist in mouse brain in a defined time window only at later postnatal stages. We have also determined the Lingo‐1 distribution showing expression in particular subsets of neurons, but not in myelinating mature oligodendrocytes. Surprisingly, Lingo‐1 is expressed at early developmental stages without NgR1, which supports the notion that Lingo‐1 may participate in other activities in developing neurons different from oligodendrocyte maturation or axon extension inhibition in the adult. Finally, we propose that the intracellular domain of Lingo‐1 contributes to signaling and show that it interacts with the postmitotic neuronal specific zinc finger protein Myt1l, suggesting that Lingo‐1 may regulate Myt1l transcription factor activity by affecting its subcellular localization.
Blood | 2008
Raquel Pluvinet; Rut Olivar; Jerzy Krupinski; Inmaculada Herrero-Fresneda; Luque A; Joan Torras; Josep M. Cruzado; Josep M. Grinyó; Lauro Sumoy; Josep M. Aran
The CD40-CD154 dyad seems to play a prominent role fostering the immune-inflammatory response triggered by endothelial cell (EC)-T-cell communication. To delineate comprehensively the involvement of CD40 (TNFRSF5) in EC activation, we combined RNAi-mediated CD40 knockdown with comparative genome-wide transcriptional profiling of ECs interacting with (CD154+) T cells. We report the initiation of a profound stress response in ECs upon CD40-CD154 engagement through early up-regulation of, among others, the major proinflammatory NF-kappaB and MAPK/SAPK pathways and their associated transcription factors. Moreover, we have identified novel genes regulated through the CD40-CD154 interaction, and pathways previously unrecognized to be induced by CD40 signaling in ECs. Thus, we document a significant down-regulation of endothelial APLN by CD40-CD154 interaction, TNFalpha/IFNgamma exposure, and in immune-inflammatory pathologies, which could lead to hemodynamic dysfunction. Conversely, CD40-mediated up-regulation of the viral immune surveillance system, notably TLR3, IFIH1, RIG-I, and RNASEL, establishes a reverse link from adaptive to innate immunity in ECs. Moreover, systematic enrichment analysis substantiates endothelial CD40 involvement in the transcriptional regulation of gene networks associated with adhesion and motility, immunity, cell fate control, hemostasis, and metabolism. Our study also highlights the anti-inflammatory potential of RNAi-mediated CD40 inhibition, and the relevance of CD40 signaling for therapeutic intervention.
BMC Genomics | 2013
Franc Llorens; Manuela Hummel; Lorena Pantano; Xavier Pastor; Ana P. Vivancos; Ester Castillo; Heidi Mattlin; Anna Ferrer; Matthew Ingham; Marc Noguera; Robert Kofler; Juliane C. Dohm; Raquel Pluvinet; Mònica Bayés; Heinz Himmelbauer; José Antonio del Río; Eulàlia Martí; Lauro Sumoy
BackgroundEpidermal Growth Factor (EGF) plays an important function in the regulation of cell growth, proliferation, and differentiation by binding to its receptor (EGFR) and providing cancer cells with increased survival responsiveness. Signal transduction carried out by EGF has been extensively studied at both transcriptional and post-transcriptional levels. Little is known about the involvement of microRNAs (miRNAs) in the EGF signaling pathway. miRNAs have emerged as major players in the complex networks of gene regulation, and cancer miRNA expression studies have evidenced a direct involvement of miRNAs in cancer progression.ResultsIn this study, we have used an integrative high content analysis approach to identify the specific miRNAs implicated in EGF signaling in HeLa cells as potential mediators of cancer mediated functions. We have used microarray and deep-sequencing technologies in order to obtain a global view of the EGF miRNA transcriptome with a robust experimental cross-validation. By applying a procedure based on Rankprod tests, we have delimited a solid set of EGF-regulated miRNAs. After validating regulated miRNAs by reverse transcription quantitative PCR, we have derived protein networks and biological functions from the predicted targets of the regulated miRNAs to gain insight into the potential role of miRNAs in EGF-treated cells. In addition, we have analyzed sequence heterogeneity due to editing relative to the reference sequence (isomiRs) among regulated miRNAs.ConclusionsWe propose that the use of global genomic miRNA cross-validation derived from high throughput technologies can be used to generate more reliable datasets inferring more robust networks of co-regulated predicted miRNA target genes.
Scientific Reports | 2016
Vicenç Ruiz de Porras; Sara Bystrup; Anna Martínez-Cardús; Raquel Pluvinet; Lauro Sumoy; Lynne M. Howells; Mark I. James; Chinenye Iwuji; Jose Luis Manzano; Laura Layos; Cristina Buges; Albert Abad; Eva Martinez-Balibrea
Resistance to oxaliplatin (OXA) is a complex process affecting the outcomes of metastatic colorectal cancer (CRC) patients treated with this drug. De-regulation of the NF-κB signalling pathway has been proposed as an important mechanism involved in this phenomenon. Here, we show that NF-κB was hyperactivated in in vitro models of OXA-acquired resistance but was attenuated by the addition of Curcumin, a non-toxic NF-κB inhibitor. The concomitant combination of Curcumin + OXA was more effective and synergistic in cell lines with acquired resistance to OXA, leading to the reversion of their resistant phenotype, through the inhibition of the NF-κB signalling cascade. Transcriptomic profiling revealed the up-regulation of three NF-κB-regulated CXC-chemokines, CXCL8, CXCL1 and CXCL2, in the resistant cells that were more efficiently down-regulated after OXA + Curcumin treatment as compared to the sensitive cells. Moreover, CXCL8 and CXCL1 gene silencing made resistant cells more sensitive to OXA through the inhibition of the Akt/NF-κB pathway. High expression of CXCL1 in FFPE samples from explant cultures of CRC patients-derived liver metastases was associated with response to OXA + Curcumin. In conclusion, we suggest that combination of OXA + Curcumin could be an effective treatment, for which CXCL1 could be used as a predictive marker, in CRC patients.
Cerebral Cortex | 2010
Vanessa Gil; Zoë Bichler; Jae K. Lee; Oscar Seira; Franc Llorens; Ana Bribián; Ricardo Morales; Enric Claverol-Tinturé; Eduardo Soriano; Lauro Sumoy; Binhai Zheng; José Antonio del Río
The oligodendrocyte myelin glycoprotein is a glycosylphosphatidylinositol-anchored protein expressed by neurons and oligodendrocytes in the central nervous system. Attempts have been made to identify the functions of the myelin-associated inhibitory proteins (MAIPs) after axonal lesion or in neurodegeneration. However, the developmental roles of some of these proteins and their receptors remain elusive. Recent studies indicate that NgR1 and the recently discovered receptor PirB restrict cortical synaptic plasticity. However, the putative factors that trigger these effects are unknown. Because Nogo-A is mostly associated with the endoplasmic reticulum and myelin associated glycoprotein appears late during development, the putative participation of OMgp should be considered. Here, we examine the pattern of development of OMgp immunoreactive elements during mouse telencephalic development. OMgp immunoreactivity in the developing cortex follows the establishment of the thalamo-cortical barrel field. At the cellular level, we located OMgp neuronal membranes in dendrites and axons as well as in brain synaptosome fractions and axon varicosities. Lastly, the analysis of the barrel field in OMgp-deficient mice revealed that although thalamo-cortical connections were formed, their targeting in layer IV was altered, and numerous axons ectopically invaded layers II-III. Our data support the idea that early expressed MAIPs play an active role during development and point to OMgp participating in thalamo-cortical connections.
Applied and Environmental Microbiology | 2010
Eva González; M. Rosario Fernández; Didac Marco; Eduard Calam; Lauro Sumoy; Xavier Parés; Sylvie Dequin; Josep A. Biosca
ABSTRACT NAD-dependent butanediol dehydrogenase (Bdh1p) from Saccharomyces cerevisiae reversibly transforms acetoin to 2,3-butanediol in a stereospecific manner. Deletion of BDH1 resulted in an accumulation of acetoin and a diminution of 2,3-butanediol in two S. cerevisiae strains under two different growth conditions. The concentrations of (2R,3R)-2,3-butanediol are mostly dependent on Bdh1p activity, while those of (meso)-2,3-butanediol are also influenced by the activity of NADP(H)-dependent oxidoreductases. One of them has been purified and shown to be d-arabinose dehydrogenase (Ara1p), which converts (R/S)-acetoin to meso-2,3-butanediol and (2S,3S)-2,3-butanediol. Deletion of BDH2, a gene adjacent to BDH1, whose encoded protein is 51% identical to Bdh1p, does not significantly alter the levels of acetoin or 2,3-butanediol in comparison to the wild-type strain. Furthermore, we have expressed Bdh2p with a histidine tag and have shown it to be inactive toward 2,3-butanediol. A whole-genome expression analysis with microarrays demonstrates that BDH1 and BDH2 are reciprocally regulated.