Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lavanya Balakrishnan is active.

Publication


Featured researches published by Lavanya Balakrishnan.


Nucleic Acids Research | 2006

Human Protein Reference Database—2009 update

T. S. Keshava Prasad; Renu Goel; Kumaran Kandasamy; Shivakumar Keerthikumar; Sameer Kumar; Suresh Mathivanan; Deepthi Telikicherla; Rajesh Raju; Beema Shafreen; Abhilash Venugopal; Lavanya Balakrishnan; Arivusudar Marimuthu; Sutopa Banerjee; Devi S. Somanathan; Aimy Sebastian; Sandhya Rani; Somak Ray; C. J. Harrys Kishore; Sashi Kanth; Mukhtar Ahmed; Manoj Kumar Kashyap; Riaz Mohmood; Y. L. Ramachandra; V. Krishna; B. Abdul Rahiman; S. Sujatha Mohan; Prathibha Ranganathan; Subhashri Ramabadran; Raghothama Chaerkady; Akhilesh Pandey

Human Protein Reference Database (HPRD—http://www.hprd.org/), initially described in 2003, is a database of curated proteomic information pertaining to human proteins. We have recently added a number of new features in HPRD. These include PhosphoMotif Finder, which allows users to find the presence of over 320 experimentally verified phosphorylation motifs in proteins of interest. Another new feature is a protein distributed annotation system—Human Proteinpedia (http://www.humanproteinpedia.org/)—through which laboratories can submit their data, which is mapped onto protein entries in HPRD. Over 75 laboratories involved in proteomics research have already participated in this effort by submitting data for over 15 000 human proteins. The submitted data includes mass spectrometry and protein microarray-derived data, among other data types. Finally, HPRD is also linked to a compendium of human signaling pathways developed by our group, NetPath (http://www.netpath.org/), which currently contains annotations for several cancer and immune signaling pathways. Since the last update, more than 5500 new protein sequences have been added, making HPRD a comprehensive resource for studying the human proteome.


Nature | 2014

A draft map of the human proteome

Min Sik Kim; Sneha M. Pinto; Derese Getnet; Raja Sekhar Nirujogi; Srikanth S. Manda; Raghothama Chaerkady; Dhanashree S. Kelkar; Ruth Isserlin; Shobhit Jain; Joji Kurian Thomas; Babylakshmi Muthusamy; Pamela Leal-Rojas; Praveen Kumar; Nandini A. Sahasrabuddhe; Lavanya Balakrishnan; Jayshree Advani; Bijesh George; Santosh Renuse; Lakshmi Dhevi N. Selvan; Arun H. Patil; Vishalakshi Nanjappa; Aneesha Radhakrishnan; Samarjeet Prasad; Tejaswini Subbannayya; Rajesh Raju; Manish Kumar; Sreelakshmi K. Sreenivasamurthy; Arivusudar Marimuthu; Gajanan Sathe; Sandip Chavan

The availability of human genome sequence has transformed biomedical research over the past decade. However, an equivalent map for the human proteome with direct measurements of proteins and peptides does not exist yet. Here we present a draft map of the human proteome using high-resolution Fourier-transform mass spectrometry. In-depth proteomic profiling of 30 histologically normal human samples, including 17 adult tissues, 7 fetal tissues and 6 purified primary haematopoietic cells, resulted in identification of proteins encoded by 17,294 genes accounting for approximately 84% of the total annotated protein-coding genes in humans. A unique and comprehensive strategy for proteogenomic analysis enabled us to discover a number of novel protein-coding regions, which includes translated pseudogenes, non-coding RNAs and upstream open reading frames. This large human proteome catalogue (available as an interactive web-based resource at http://www.humanproteomemap.org) will complement available human genome and transcriptome data to accelerate biomedical research in health and disease.


Genome Biology | 2010

NetPath: a public resource of curated signal transduction pathways.

Kumaran Kandasamy; S. Sujatha Mohan; Rajesh Raju; Shivakumar Keerthikumar; Ghantasala S. Sameer Kumar; Abhilash Venugopal; Deepthi Telikicherla; Daniel J. Navarro; Suresh Mathivanan; Christian Pecquet; Sashi Kanth Gollapudi; Sudhir Gopal Tattikota; Shyam Mohan; Hariprasad Padhukasahasram; Yashwanth Subbannayya; Renu Goel; Harrys K.C. Jacob; Jun Zhong; Raja Sekhar; Vishalakshi Nanjappa; Lavanya Balakrishnan; Roopashree Subbaiah; Yl Ramachandra; B. Abdul Rahiman; T. S. Keshava Prasad; Jian Xin Lin; Jon C. D. Houtman; Stephen Desiderio; Jean-Christophe Renauld; Stefan N. Constantinescu

We have developed NetPath as a resource of curated human signaling pathways. As an initial step, NetPath provides detailed maps of a number of immune signaling pathways, which include approximately 1,600 reactions annotated from the literature and more than 2,800 instances of transcriptionally regulated genes - all linked to over 5,500 published articles. We anticipate NetPath to become a consolidated resource for human signaling pathways that should enable systems biology approaches.


PLOS Medicine | 2009

A Compendium of Potential Biomarkers of Pancreatic Cancer

H. C. Harsha; Kumaran Kandasamy; Prathibha Ranganathan; Sandhya Rani; Subhashri Ramabadran; Sashikanth Gollapudi; Lavanya Balakrishnan; Sutopa B. Dwivedi; Deepthi Telikicherla; Lakshmi Dhevi N. Selvan; Renu Goel; Suresh Mathivanan; Arivusudar Marimuthu; Manoj Kumar Kashyap; Robert F. Vizza; Robert J. Mayer; James A. DeCaprio; Sudhir Srivastava; Samir M. Hanash; Ralph H. Hruban; Akhilesh Pandey

Akhilesh Pandey and colleagues describe a compendium of potential biomarkers that can be systematically validated by the pancreatic cancer community.


Nucleic Acids Research | 2014

Plasma Proteome Database as a resource for proteomics research: 2014 update.

Vishalakshi Nanjappa; Joji Kurian Thomas; Arivusudar Marimuthu; Babylakshmi Muthusamy; Aneesha Radhakrishnan; Rakesh K. Sharma; Aafaque Ahmad Khan; Lavanya Balakrishnan; Nandini A. Sahasrabuddhe; Satwant Kumar; Binit N Jhaveri; Kaushal Vinaykumar Sheth; Ramesh Kumar Khatana; Patrick G. Shaw; S. Srikanth; Premendu P. Mathur; Subramanian Shankar; Dindagur Nagaraja; Rita Christopher; Suresh Mathivanan; Rajesh Raju; Ravi Sirdeshmukh; Aditi Chatterjee; Richard J. Simpson; H. C. Harsha; Akhilesh Pandey; T. S. Keshava Prasad

Plasma Proteome Database (PPD; http://www.plasmaproteomedatabase.org/) was initially described in the year 2005 as a part of Human Proteome Organization’s (HUPO’s) pilot initiative on Human Plasma Proteome Project. Since then, improvements in proteomic technologies and increased throughput have led to identification of a large number of novel plasma proteins. To keep up with this increase in data, we have significantly enriched the proteomic information in PPD. This database currently contains information on 10 546 proteins detected in serum/plasma of which 3784 have been reported in two or more studies. The latest version of the database also incorporates mass spectrometry-derived data including experimentally verified proteotypic peptides used for multiple reaction monitoring assays. Other novel features include published plasma/serum concentrations for 1278 proteins along with a separate category of plasma-derived extracellular vesicle proteins. As plasma proteins have become a major thrust in the field of biomarkers, we have enabled a batch-based query designated Plasma Proteome Explorer, which will permit the users in screening a list of proteins or peptides against known plasma proteins to assess novelty of their data set. We believe that PPD will facilitate both clinical and basic research by serving as a comprehensive reference of plasma proteins in humans and accelerate biomarker discovery and translation efforts.


Molecular & Cellular Proteomics | 2011

Proteogenomic Analysis of Mycobacterium tuberculosis By High Resolution Mass Spectrometry

Dhanashree S. Kelkar; Dhirendra Kumar; Praveen Kumar; Lavanya Balakrishnan; Babylakshmi Muthusamy; Amit Kumar Yadav; Priyanka Shrivastava; Arivusudar Marimuthu; S. Anand; Hema Sundaram; Reena Kingsbury; H. C. Harsha; Bipin G. Nair; T. S. Keshava Prasad; Devendra Singh Chauhan; Kiran Katoch; Vishwa Mohan Katoch; Prahlad Kumar; Raghothama Chaerkady; Debasis Dash; Akhilesh Pandey

The genome sequencing of H37Rv strain of Mycobacterium tuberculosis was completed in 1998 followed by the whole genome sequencing of a clinical isolate, CDC1551 in 2002. Since then, the genomic sequences of a number of other strains have become available making it one of the better studied pathogenic bacterial species at the genomic level. However, annotation of its genome remains challenging because of high GC content and dissimilarity to other model prokaryotes. To this end, we carried out an in-depth proteogenomic analysis of the M. tuberculosis H37Rv strain using Fourier transform mass spectrometry with high resolution at both MS and tandem MS levels. In all, we identified 3176 proteins from Mycobacterium tuberculosis representing ∼80% of its total predicted gene count. In addition to protein database search, we carried out a genome database search, which led to identification of ∼250 novel peptides. Based on these novel genome search-specific peptides, we discovered 41 novel protein coding genes in the H37Rv genome. Using peptide evidence and alternative gene prediction tools, we also corrected 79 gene models. Finally, mass spectrometric data from N terminus-derived peptides confirmed 727 existing annotations for translational start sites while correcting those for 33 proteins. We report creation of a high confidence set of protein coding regions in Mycobacterium tuberculosis genome obtained by high resolution tandem mass-spectrometry at both precursor and fragment detection steps for the first time. This proteogenomic approach should be generally applicable to other organisms whose genomes have already been sequenced for obtaining a more accurate catalogue of protein-coding genes.


Clinical Proteomics | 2014

Differential proteomic analysis of synovial fluid from rheumatoid arthritis and osteoarthritis patients

Lavanya Balakrishnan; Mitali Bhattacharjee; Sartaj Ahmad; Raja Sekhar Nirujogi; Santosh Renuse; Yashwanth Subbannayya; Arivusudar Marimuthu; S. Srikanth; Rajesh Raju; Mukesh Dhillon; Navjyot Kaur; Ramesh Jois; Vivek Vasudev; Yl Ramachandra; Nandini A. Sahasrabuddhe; T. S. Keshava Prasad; S. Sujatha Mohan; Harsha Gowda; Subramanian Shankar; Akhilesh Pandey

BackgroundRheumatoid arthritis and osteoarthritis are two common musculoskeletal disorders that affect the joints. Despite high prevalence rates, etiological factors involved in these disorders remain largely unknown. Dissecting the molecular aspects of these disorders will significantly contribute to improving their diagnosis and clinical management. In order to identify proteins that are differentially expressed between these two conditions, a quantitative proteomic profiling of synovial fluid obtained from rheumatoid arthritis and osteoarthritis patients was carried out by using iTRAQ labeling followed by high resolution mass spectrometry analysis.ResultsWe have identified 575 proteins out of which 135 proteins were found to be differentially expressed by ≥3-fold in the synovial fluid of rheumatoid arthritis and osteoarthritis patients. Proteins not previously reported to be associated with rheumatoid arthritis including, coronin-1A (CORO1A), fibrinogen like-2 (FGL2), and macrophage capping protein (CAPG) were found to be upregulated in rheumatoid arthritis. Proteins such as CD5 molecule-like protein (CD5L), soluble scavenger receptor cysteine-rich domain-containing protein (SSC5D), and TTK protein kinase (TTK) were found to be upregulated in the synovial fluid of osteoarthritis patients. We confirmed the upregulation of CAPG in rheumatoid arthritis synovial fluid by multiple reaction monitoring assay as well as by Western blot. Pathway analysis of differentially expressed proteins revealed a significant enrichment of genes involved in glycolytic pathway in rheumatoid arthritis.ConclusionsWe report here the largest identification of proteins from the synovial fluid of rheumatoid arthritis and osteoarthritis patients using a quantitative proteomics approach. The novel proteins identified from our study needs to be explored further for their role in the disease pathogenesis of rheumatoid arthritis and osteoarthritis.Sartaj Ahmad and Raja Sekhar Nirujogi contributed equally to this article.


Journal of Signal Transduction | 2014

A network map of FGF-1/FGFR signaling system

Rajesh Raju; Shyam Mohan Palapetta; Varot K. Sandhya; Apeksha Sahu; Abbas Alipoor; Lavanya Balakrishnan; Jayshree Advani; Bijesh George; K. Ramachandra Kini; N. P. Geetha; H. S. Prakash; T. S. Keshava Prasad; Yu-Jung Chang; Linyi Chen; Akhilesh Pandey; Harsha Gowda

Fibroblast growth factor-1 (FGF-1) is a well characterized growth factor among the 22 members of the FGF superfamily in humans. It binds to all the four known FGF receptors and regulates a plethora of functions including cell growth, proliferation, migration, differentiation, and survival in different cell types. FGF-1 is involved in the regulation of diverse physiological processes such as development, angiogenesis, wound healing, adipogenesis, and neurogenesis. Deregulation of FGF-1 signaling is not only implicated in tumorigenesis but also is associated with tumor invasion and metastasis. Given the biomedical significance of FGFs and the fact that individual FGFs have different roles in diverse physiological processes, the analysis of signaling pathways induced by the binding of specific FGFs to their cognate receptors demands more focused efforts. Currently, there are no resources in the public domain that facilitate the analysis of signaling pathways induced by individual FGFs in the FGF/FGFR signaling system. Towards this, we have developed a resource of signaling reactions triggered by FGF-1/FGFR system in various cell types/tissues. The pathway data and the reaction map are made available for download in different community standard data exchange formats through NetPath and NetSlim signaling pathway resources.


Clinical Proteomics | 2014

Proteomic analysis of human osteoarthritis synovial fluid

Lavanya Balakrishnan; Raja Sekhar Nirujogi; Sartaj Ahmad; Mitali Bhattacharjee; Srikanth S. Manda; Santosh Renuse; Dhanashree S. Kelkar; Yashwanth Subbannayya; Rajesh Raju; Renu Goel; Joji Kurian Thomas; Navjyot Kaur; Mukesh Dhillon; Shantal Gupta Tankala; Ramesh Jois; Vivek Vasdev; Yl Ramachandra; Nandini A. Sahasrabuddhe; T. S. Keshava Prasad; S. Sujatha Mohan; Harsha Gowda; Subramanian Shankar; Akhilesh Pandey

BackgroundOsteoarthritis is a chronic musculoskeletal disorder characterized mainly by progressive degradation of the hyaline cartilage. Patients with osteoarthritis often postpone seeking medical help, which results in the diagnosis being made at an advanced stage of cartilage destruction. Sustained efforts are needed to identify specific markers that might help in early diagnosis, monitoring disease progression and in improving therapeutic outcomes. We employed a multipronged proteomic approach, which included multiple fractionation strategies followed by high resolution mass spectrometry analysis to explore the proteome of synovial fluid obtained from osteoarthritis patients. In addition to the total proteome, we also enriched glycoproteins from synovial fluid using lectin affinity chromatography.ResultsWe identified 677 proteins from synovial fluid of patients with osteoarthritis of which 545 proteins have not been previously reported. These novel proteins included ADAM-like decysin 1 (ADAMDEC1), alanyl (membrane) aminopeptidase (ANPEP), CD84, fibulin 1 (FBLN1), matrix remodelling associated 5 (MXRA5), secreted phosphoprotein 2 (SPP2) and spondin 2 (SPON2). We identified 300 proteins using lectin affinity chromatography, including the glycoproteins afamin (AFM), attractin (ATRN), fibrillin 1 (FBN1), transferrin (TF), tissue inhibitor of metalloproteinase 1 (TIMP1) and vasorin (VSN). Gene ontology analysis confirmed that a majority of the identified proteins were extracellular and are mostly involved in cell communication and signaling. We also confirmed the expression of ANPEP, dickkopf WNT signaling pathway inhibitor 3 (DKK3) and osteoglycin (OGN) by multiple reaction monitoring (MRM) analysis of osteoarthritis synovial fluid samples.ConclusionsWe present an in-depth analysis of the synovial fluid proteome from patients with osteoarthritis. We believe that the catalog of proteins generated in this study will further enhance our knowledge regarding the pathophysiology of osteoarthritis and should assist in identifying better biomarkers for early diagnosis.


Proteomics Clinical Applications | 2013

SILAC-based quantitative proteomic analysis of gastric cancer secretome

Arivusudar Marimuthu; Yashwanth Subbannayya; Nandini A. Sahasrabuddhe; Lavanya Balakrishnan; Nazia Syed; Nirujogi Raja Sekhar; Teesta V. Katte; Sneha M. Pinto; S. Srikanth; Praveen Kumar; Harsh Pawar; Manoj Kumar Kashyap; Jagadeesha Maharudraiah; Hassan Ashktorab; Duane T. Smoot; Girija Ramaswamy; Rekha V. Kumar; Yulan Cheng; Stephen J. Meltzer; Juan Carlos Roa; Raghothama Chaerkady; T. S. Keshava Prasad; H. C. Harsha; Aditi Chatterjee; Akhilesh Pandey

Gastric cancer is a commonly occurring cancer in Asia and one of the leading causes of cancer deaths. However, there is no reliable blood‐based screening test for this cancer. Identifying proteins secreted from tumor cells could lead to the discovery of clinically useful biomarkers for early detection of gastric cancer.

Collaboration


Dive into the Lavanya Balakrishnan's collaboration.

Top Co-Authors

Avatar

Akhilesh Pandey

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. C. Harsha

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ravi Sirdeshmukh

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge