Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lavinia Onel is active.

Publication


Featured researches published by Lavinia Onel.


Journal of Physical Chemistry Letters | 2012

Direct Determination of the Rate Coefficient for the Reaction of OH Radicals with Monoethanol Amine (MEA) from 296 to 510 K

Lavinia Onel; Mark A. Blitz; Paul W. Seakins

Monoethanol amine (H2NCH2CH2OH, MEA) has been proposed for large-scale use in carbon capture and storage. We present the first absolute, temperature-dependent determination of the rate coefficient for the reaction of OH with MEA using laser flash photolysis for OH generation, monitoring OH removal by laser-induced fluorescence. The room-temperature rate coefficient is determined to be (7.61 ± 0.76) × 10(-11) cm(3) molecule(-1) s(-1), and the rate coefficient decreases by about 40% by 510 K. The temperature dependence of the rate coefficient is given by k1= (7.73 ± 0.24) × 10(-11)(T/295)(-(0.79±0.11)) cm(3) molecule(-1) s(-1). The high rate coefficient shows that gas-phase processing in the atmosphere will be competitive with uptake onto aerosols.


Journal of Physical Chemistry A | 2013

Gas-phase reactions of OH with methyl amines in the presence or absence of molecular oxygen. An experimental and theoretical study.

Lavinia Onel; L. Thonger; Mark A. Blitz; Paul W. Seakins; Arne Joakim C. Bunkan; Mohammad Solimannejad; Claus J. Nielsen

The rate coefficients for the reaction of OH with the alkyl amines: methylamine (MA), dimethylamine (DMA), trimethylamine (TMA), and ethylamine (EA) have been determined using the technique of pulsed laser photolysis with detection of OH by laser-induced fluorescence as a function of temperature from 298 K to ∼600 K. The rate coefficients (10(11) × k/cm(3) molecule(-1) s(-1)) at 298 K in nitrogen bath gas (typically 5-25 Torr) are: k(OH+MA) = 1.97 ± 0.11, k(OH+DMA) = 6.27 ± 0.63, k(OH+TMA) = 5.78 ± 0.48, k(OH+EA) = 2.50 ± 0.13. The reactions all show a negative temperature dependence which can be characterized as: k(OH+MA) = (1.889 ± 0.053) × 10(-11)(T/298 K)(-(0.56±0.10)), k(OH+DMA) = (6.39 ± 0.35) × 10(-11)(T/298 K)(-(0.75±0.18)), k(OH+TMA) = (5.73 ± 0.15) × 10(-11)(T/298 K)(-(0.71±0.10)), and k(OH+EA) = (2.54 ± 0.08) × 10(-11)(T/298 K)(-(0.68±0.10)). OH and OD reactions have very similar kinetics. Potential energy surfaces (PES) for the reactions have been characterized at the MP2/aug-cc-pVTZ level and improved single point energies of stationary points obtained in CCSD(T) and CCSD(T*)-F12a calculations. The PES for all reactions are characterized by the formation of pre- and post-reaction complexes and submerged barriers. The calculated rate coefficients are in good agreement with experiment; the overall rate coefficients are relatively insensitive to variations of the barrier heights within typical chemical accuracy, but the branching ratios vary significantly. The rate coefficients for the reactions of OH/OD with MA, DMA, and EA do not vary with added oxygen, but for TMA a significant reduction in the rate coefficient is observed consistent with OH recycling from a chemically activated peroxy radical. OH regeneration is pressure-dependent and is not significant at 298 K and atmospheric pressure, but the efficiency of recycling increases strongly with temperature. The PES for OH recycling have been calculated. There is evidence that the primary process in TMA photolysis at 248 nm is the loss of H atoms.


Environmental Science & Technology | 2014

Branching Ratios in Reactions of OH Radicals with Methylamine, Dimethylamine, and Ethylamine

Lavinia Onel; Mark A. Blitz; Matthew Dryden; Lucy Thonger; Paul W. Seakins

The branching ratios for the reaction of the OH radical with the primary and secondary alkylamines: methylamine (MA), dimethylamine (DMA), and ethylamine (EA), have been determined using the technique of pulsed laser photolysis-laser-induced fluorescence. Titration of the carbon-centered radical, formed following the initial OH abstraction, with oxygen to give HO2 and an imine, followed by conversion of HO2 to OH by reaction with NO, resulted in biexponential OH decay traces on a millisecond time scale. Analysis of the biexponential curves gave the HO2 yield, which equaled the branching ratio for abstraction at αC-H position, r(αC-H). The technique was validated by reproducing known branching ratios for OH abstraction for methanol and ethanol. For the amines studied in this work (all at 298 K): r(αC-H,MA) = 0.76 ± 0.08, r(αC-H,DMA) = 0.59 ± 0.07, and r(αC-H,EA) = 0.49 ± 0.06 where the errors are a combination in quadrature of statistical errors at the 2σ level and an estimated 10% systematic error. The branching ratios r(αC-H) for OH reacting with (CH3)2NH and CH3CH2NH2 are in agreement with those obtained for the OD reaction with (CH3)2ND (d-DMA) and CH3CH2ND2 (d-EA): r(αC-H,d-DMA) = 0.71 ± 0.12 and r(αC-H,d-EA) = 0.54 ± 0.07. A master equation analysis (using the MESMER package) based on potential energy surfaces from G4 theory was used to demonstrate that the experimental determinations are unaffected by formation of stabilized peroxy radicals and to estimate atmospheric pressure yields. The branching ratio for imine formation through the reaction of O2 with α carbon-centered radicals at 1 atm of N2 are estimated as r(CH2NH2) = 0.79 ± 0.15, r(CH2NHCH3) = 0.72 ± 0.19, and r(CH3CHNH2) = 0.50 ± 0.18. The implications of this work on the potential formation of nitrosamines and nitramines are briefly discussed.


Journal of Physical Chemistry A | 2009

Reaction Routes Leading to CO2 and CO in the Briggs-Rauscher Oscillator: Analogies between the Oscillatory BR and BZ Reactions

Norbert Muntean; Gabriella Szabó; Maria Wittmann; Thuy Lawson; János Fülöp; Zoltán Noszticzius; Lavinia Onel

With Fenton-type experiments, it is shown that the intense CO2/CO evolution in the Briggs-Rauscher (BR) reaction is due to decarboxylation/decarbonylation of organic free radicals. The metal ion applied in the Fenton-type experiments was Fe2+ or Ti3+ or Mn2+ combined with H2O2 or S2O(8)(2-) as a peroxide, whereas the organic substrate was malonic acid (MA) or a 1:1 mixture of MA and iodomalonic acid (IMA). Experiments with a complete BR system applying MA or the MA/IMA mixture indicate that practically all CO2 and CO comes from IMA. The decarboxylation/decarbonylation mechanisms of various iodomalonyl radicals can be analogous to that of the bromomalonyl radicals studied already in the Belousov-Zhabotinsky (BZ) reaction. It is found that an intense CO2/CO evolution requires the simultaneous presence of H2O2, IO3-, Mn2+, and IMA. It is suggested that the critical first step of this complex reaction takes place in the coordination sphere of Mn2+. That first step can initiate a chain reaction where organic and hydroperoxyl radicals are the chain carriers. A chain reaction was already found in a BZ oscillator as well. Therefore, the analogies between the BR and BZ oscillators are due to the fact that in both mechanisms, free radicals and, in most cases, also transition-metal complexes play an important role.


Journal of Physical Chemistry A | 2008

I(+1) Transfer from Diiodomalonic Acid to Malonic Acid and a Complete Inhibition of the CO and CO2 Evolution in the Briggs-Rauscher Reaction by Resorcinol

Lavinia Onel; Gelu Bourceanu; Maria Wittmann; Zoltán Noszticzius; Gabriella Szabó

A recent report on an intense CO 2 and CO evolution in the Briggs-Rauscher (BR) reaction revealed that iodination of malonic acid (MA) is not the only important organic reaction in the classical BR oscillator. To disclose the source of the gas evolution, iodomalonic (IMA) and diiodomalonic (I2MA) acids were prepared by iodinating MA with nascent iodine in a semibatch reactor. The nascent iodine was generated by an iodide inflow into the reactor, which contained a mixture of MA and acidic iodate. Some CO2 and a minor CO production was observed during these iodinations. It was found that in an aqueous acidic medium the produced I2MA is not stable but decomposes slowly to diiodoacetic acid and CO2. The first-order rate constant of the I 2MA decarboxylation at 20 degrees C was found to be k1 = 9 x 10(-5) s(-1), which is rather close to the rate constant of the analogous decarboxylation of dibromomalonic acid under similar conditions (7 x 10(-5)s(-1)). From the rate of the CO2 evolution, the I2MA concentration can be calculated in a MA-IMA-I2MA mixture as only I2MA decarboxylates spontaneously but MA and IMA are stable. Following CO2 evolution rates, it was proven that I2MA can react with MA in the reversible reaction I2MA + MA <--> 2 IMA. The equilibrium constant of this reaction was calculated as K = 380 together with the rate constants of the forward k 2 = 6.2 x 10 (-2) M (-1)s(-1) and backward k-2 = 1.6 x 10(-4) M(-1)s(-1) reactions. The probable mechanism of the reaction is I(+1) transfer from I2MA to MA. The presence of I(+1) in a I2MA solution is demonstrated by its reduction with ascorbic acid. To estimate the fraction of CO2 coming from the decarboxylation of I2MA in an oscillatory BR reaction, the oscillations were inhibited by resorcinol. Unexpectedly, all CO2 and CO evolution was interrupted for more than one hour after injecting a small amount of resorcinol (10(-5) M initial concentration in the reactor). Finally, some implications of the newly found I(+1) transfer reactions and the surprisingly effective inhibition by resorcinol regarding the mechanism of the oscillatory BR reaction are discussed. The latter is explained by the ability of resorcinol to scavenge free radicals including iodine atoms without producing iodide ions.


Journal of Physical Chemistry A | 2009

Iodomalonic acid as an anti-inhibitor in the resorcinol inhibited Briggs-Rauscher reaction.

Thuy Lawson; János Fülöp; Maria Wittmann; Zoltán Noszticzius; Norbert Muntean; Gabriella Szabó; Lavinia Onel

It was found that the inhibitory effect of resorcinol is less pronounced if it is added in a later stage of the Briggs-Rauscher reaction, which indicates that an accumulating intermediate--most probably iodomalonic acid--can suppress the inhibition. In fact, when iodomalonic acid was added to the reaction mixture, the inhibitory period was shortened considerably even at micromolar levels of the iodomalonic acid concentration. Moreover, iodomalonic acid can accelerate the rate of the reaction when applied in the same low concentrations, suggesting that it can be an autocatalytic intermediate of the Briggs-Rauscher reaction.


Review of Scientific Instruments | 2016

An instrument to measure fast gas phase radical kinetics at high temperatures and pressures

Daniel Stone; Mark A. Blitz; Trevor Ingham; Lavinia Onel; Diogo J. Medeiros; Paul W. Seakins

Fast radical reactions are central to the chemistry of planetary atmospheres and combustion systems. Laser-induced fluorescence is a highly sensitive and selective technique that can be used to monitor a number of radical species in kinetics experiments, but is typically limited to low pressure systems owing to quenching of fluorescent states at higher pressures. The design and characterisation of an instrument are reported using laser-induced fluorescence detection to monitor fast radical kinetics (up to 25 000 s(-1)) at high temperatures and pressures by sampling from a high pressure reaction region to a low pressure detection region. Kinetics have been characterised at temperatures reaching 740 K and pressures up to 2 atm, with expected maximum operational conditions of up to ∼900 K and ∼5 atm. The distance between the point of sampling from the high pressure region and the point of probing within the low pressure region is critical to the measurement of fast kinetics. The instrumentation described in this work can be applied to the measurement of kinetics relevant to atmospheric and combustion chemistry.


Atmospheric Measurement Techniques | 2017

An intercomparison of HO 2 measurements by Fluorescence Assay by Gas Expansion and Cavity Ring–Down Spectroscopy within HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)

Lavinia Onel; Alexander Brennan; Michele Gianella; Grace Ronnie; Ana Lawry Aguila; Gus Hancock; L. K. Whalley; Paul W. Seakins; Grant A. D. Ritchie; Dwayne E. Heard

Simultaneous measurements of CH3O2 radical concentrations have been performed using two different methods in the Leeds HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry) chamber at 295 K and in 80 mbar of a mixture of 3 : 1 He/O2 and 100 or 1000 mbar of synthetic air. The first detection method consisted of the indirect detection of CH3O2 using the conversion of CH3O2 into CH3O by excess NO with subsequent detection of CH3O by fluorescence assay by gas expansion (FAGE). The FAGE instrument was calibrated for CH3O2 in two ways. In the first method, a known concentration of CH3O2 was generated using the 185 nm photolysis of water vapour in synthetic air at atmospheric pressure followed by the conversion of the generated OH radicals to CH3O2 by reaction with CH4/O2. This calibration can be used for experiments performed in HIRAC at 1000 mbar in air. In the second method, calibration was achieved by generating a near steady state of CH3O2 and then switching off the photolysis lamps within HIRAC and monitoring the subsequent decay of CH3O2, which was controlled via its self-reaction, and analysing the decay using second-order kinetics. This calibration could be used for experiments performed at all pressures. In the second detection method, CH3O2 was measured directly using cavity ring-down spectroscopy (CRDS) using the absorption at 7487.98 cm−1 in the A←X (ν12) band with the optical path along the∼ 1.4 m chamber diameter. Analysis of the secondorder kinetic decays of CH3O2 by self-reaction monitored by CRDS has been used for the determination of the CH3O2 absorption cross section at 7487.98 cm−1, both at 100 mbar of air and at 80 mbar of a 3 : 1 He/O2 mixture, from which σCH3O2 = (1.49± 0.19)× 10 −20 cm2 molecule−1 was determined for both pressures. The absorption spectrum of CH3O2 between 7486 and 7491 cm−1 did not change shape when the total pressure was increased to 1000 mbar, from which we determined that σCH3O2 is independent of pressure over the pressure range 100–1000 mbar in air. CH3O2 was generated in HIRAC using either the photolysis of Cl2 with UV black lamps in the presence of CH4 and O2 or the photolysis of acetone at 254 nm in the presence of O2. At 1000 mbar of synthetic air the correlation plot of [CH3O2]FAGE against [CH3O2]CRDS gave a gradient of 1.09±0.06. At 100 mbar of synthetic air the FAGE–CRDS correlation plot had a gradient of 0.95± 0.024, and at 80 mbar of 3 : 1 He/O2 mixture the correlation plot gradient was 1.03± 0.05. These results provide a validation of the FAGE method to determine concentrations of CH3O2. Published by Copernicus Publications on behalf of the European Geosciences Union. 2442 L. Onel et al.: An intercomparison of CH3O2 measurements within HIRAC


Environmental Science and Technology Letters | 2014

Atmospheric Oxidation of Piperazine by OH has a Low Potential To Form Carcinogenic Compounds

Lavinia Onel; Matthew Dryden; Mark A. Blitz; Paul W. Seakins


Journal of Physical Chemistry A | 2006

Contribution to the chemistry of the belousov - Zhabotinsky reaction. Products of the ferriin - Bromomalonic acid and the ferriin - Malonic acid reactions

László Hegedüs; Horst Dieter Försterling; Lavinia Onel; Maria Wittmann; Zoltán Noszticzius

Collaboration


Dive into the Lavinia Onel's collaboration.

Top Co-Authors

Avatar

Maria Wittmann

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar

Zoltán Noszticzius

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norbert Muntean

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar

János Fülöp

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar

Thuy Lawson

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge