Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lavinia Vittoria Lotti is active.

Publication


Featured researches published by Lavinia Vittoria Lotti.


EMBO Reports | 2002

The nuclear protein HMGB1 is secreted by monocytes via a non‐classical, vesicle‐mediated secretory pathway

Stefania Gardella; Cristina Andrei; Denise Ferrera; Lavinia Vittoria Lotti; Maria Rosaria Torrisi; Marco Bianchi; Anna Rubartelli

HMGB1, a non‐histone nuclear factor, acts extracellularly as a mediator of delayed endotoxin lethality, which raises the question of how a nuclear protein can reach the extracellular space. We show that activation of monocytes results in the redistribution of HMGB1 from the nucleus to cytoplasmic organelles, which display ultrastructural features of endolysosomes. HMGB1 secretion is induced by stimuli triggering lysosome exocytosis. The early mediator of inflammation interleukin (IL)‐1β is also secreted by monocytes through a non‐classical pathway involving exocytosis of secretory lysosomes. However, in keeping with their respective role of early and late inflammatory factors, IL‐1β and HMGB1 respond at different times to different stimuli: IL‐1β secretion is induced earlier by ATP, autocrinally released by monocytes soon after activation; HMGB1 secretion is triggered by lysophosphatidylcholine, generated later in the inflammation site. Thus, in monocytes, non‐classical secretion can occur through vescicle compartments that are at least partially distinct.


Clinical & Developmental Immunology | 2014

Palladium nanoparticles induce disturbances in cell cycle entry and progression of peripheral blood mononuclear cells: paramount role of ions.

Claudia Petrarca; Emanuela Clemente; Luca Di Giampaolo; Renato Mariani-Costantini; Kerstin Leopold; Roland Schindl; Lavinia Vittoria Lotti; Rocco Mangifesta; E. Sabbioni; Qiao Niu; Giovanni Bernardini; Mario Di Gioacchino

There is concern about the possible toxicity of palladium nanoparticles (Pd-NP), as they are released in the environment through many applications. We previously studied the toxicity of Pd-NP at high concentrations; here we address the possible toxicity of Pd-NP at low, subtoxic doses. In particular, we have exposed normal human PBMC entering into the first in vitro mitotic division to Pd-NP and to Pd(IV) ions to evaluate ROS generation and cell cycle progression. We have measured a statistically significant increase of intracellular ROS in Pd(IV) exposed cells, but not in Pd-NP exposed cells. TEM revealed accumulation of lipid droplets and autophagic and mitophagic vacuoles, which appeared more conspicuous in cells exposed to Pd(IV) ions than to Pd-NP. Pd-NP were visible in the cytoplasm of Pd-NP exposed cells. Pd-NP addition was associated with a significant increase of cells within the G0/G1-phase and a significant reduction in GS- and G2/M-phases. Cells exposed to Pd(IV) ions showed a significant amplification of these cell cycle alterations. These results suggest that ions, per se or released by NPs, are the true inducers of Pd toxicity. It will be essential to verify whether the observed disturbance represents a temporary response or might result in permanent alterations.


Molecular and Cellular Biology | 1996

Shc Proteins Are Localized on Endoplasmic Reticulum Membranes and Are Redistributed after Tyrosine Kinase Receptor Activation

Lavinia Vittoria Lotti; Luisa Lanfrancone; Enrica Migliaccio; Claudia Zompetta; Giuliana Pelicci; Anna Elisabetta Salcini; Brunangelo Falini; Pier Giuseppe Pelicci; Maria Rosaria Torrisi

The intracellular localization of Shc proteins was analyzed by immunofluorescence and immunoelectron microscopy in normal cells and cells expressing the epidermal growth factor receptor or the EGFR/erbB2 chimera. In unstimulated cells, the immunolabeling was localized in the central perinuclear area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane and endocytic structures, such as coated pits and endosomes, and with the peripheral cytosol. Receptor activation in cells expressing phosphorylation-defective mutants of Shc and erbB-2 kinase showed that receptor autophosphorylation, but not Shc phosphorylation, is required for redistribution of Shc proteins. The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein.


Genes, Chromosomes and Cancer | 2002

Subcellular localization of the BRCA1 gene product in mitotic cells

Lavinia Vittoria Lotti; Laura Ottini; Cristina D'Amico; Roberto Gradini; Alessandro Cama; Francesca Belleudi; Luigi Frati; Maria Rosaria Torrisi; Renato Mariani-Costantini

The product of the hereditary breast cancer susceptibility gene BRCA1 is a multifunctional protein involved in the maintenance of genomic integrity, in transcriptional coactivation, and in the control of cell growth. BRCA1‐deficient cells manifest chromosomal instability. During mitosis, BRCA1 is known to interact with γ‐tubulin in the centrosomes, key elements of the mitotic spindle. Using confocal microscopy and immunogold electron microscopy, we investigated the distribution of endogenous BRCA1 relative to mitotic spindle markers in breast cancer cells. By confocal analysis, BRCA1 and β‐tubulin colocalized to microtubules of the mitotic spindle and to the centrosomes. Immunogold electron microscopy confirmed these results and further revealed that BRCA1 and α‐tubulin codistributed to the walls of the centrioles and to pericentriolar fibers at centrosomes. During chromatid segregation, codistribution was also detected along individual spindle microtubules and at sites of insertion of microtubules on chromosomes. At cytokinesis, BRCA1 and α‐tubulin codistributed to the midbody. Coimmunoprecipitation supported the association of full‐length BRCA1 with α‐ and β‐tubulin. These results are consistent with an involvement of BRCA1 in the dynamics of the mitotic spindle and in the segregation of duplicated chromosomes.


Journal of Virology | 2014

Epstein-Barr Virus Blocks the Autophagic Flux and Appropriates the Autophagic Machinery To Enhance Viral Replication

Marisa Granato; Roberta Santarelli; Antonella Farina; Roberta Gonnella; Lavinia Vittoria Lotti; Alberto Faggioni; Mara Cirone

ABSTRACT Autophagy is a catabolic pathway that helps cells to survive under stressful conditions. Cells also use autophagy to clear microbiological infections, but microbes have learned how to manipulate the autophagic pathway for their own benefit. The experimental evidence obtained in this study suggests that the autophagic flux is blocked at the final steps during the reactivation of Epstein-Barr virus (EBV) from latency. This is indicated by the level of the lipidated form of LC3 that does not increase in the presence of bafilomycin and by the lack of colocalization of autophagosomes with lysosomes, which correlates with reduced Rab7 expression. Since the inhibition of the early phases of autophagy impaired EBV replication and viral particles were observed in autophagic vesicles in the cytoplasm of producing cells, we suggest that EBV exploits the autophagic machinery for its transportation in order to enhance viral production. The autophagic block was not mediated by ZEBRA, an immediate-early EBV lytic gene, whose transfection in Ramos, Akata, and 293 cells promoted a complete autophagic flux. The block occurred only when the complete set of EBV lytic genes was expressed. We suggest that the inhibition of the early autophagic steps or finding strategies to overcome the autophagic block, allowing viral degradation into the lysosomes, can be exploited to manipulate EBV replication. IMPORTANCE This study shows, for the first time, that autophagy is blocked at the final degradative steps during EBV replication in several cell types. Through this block, EBV hijacks the autophagic vesicles for its intracellular transportation and enhances viral production. A better understanding of virus-host interactions could help in the design of new therapeutic approaches against EBV-associated malignancies.


PLOS ONE | 2012

Primary Effusion Lymphoma Cell Death Induced by Bortezomib and AG 490 Activates Dendritic Cells through CD91

Mara Cirone; Livia Di Renzo; Lavinia Vittoria Lotti; Valeria Conte; Pankaj Trivedi; Roberta Santarelli; Roberta Gonnella; Luigi Frati; Alberto Faggioni

To understand how cytotoxic agent-induced cancer cell death affects the immune system is of fundamental importance to stimulate immune response to counteract the high mortality due to cancer. Here we compared the immunogenicity of Primary Effusion Lymphoma (PEL) cell death induced by anticancer drug Bortezomib (Velcade) and Tyrphostin AG 490, a Janus Activated Kinase 2/signal trasducer and activator of transcription-3 (JAK2/STAT3) inhibitor. We show that both treatments were able to induce PEL apoptosis with similar kinetics and promote dendritic cells (DC) maturation. The surface expression of molecules involved in immune activation, namely calreticulin (CRT), heat shock proteins (HSP) 90 and 70 increased in dying cells. This was correlated with DC activation. We found that PEL cell death induced by Bortezomib was more effective in inducing uptake by DC compared to AG 490 or combination of both drugs. However the DC activation induced by all treatments was completely inhibited when these cells were pretreated with a neutralizing antiboby directed against the HSP90/70 and CRT common receptor, CD91. The activation of DC by Bortezomib and AG 490 treated PEL cells, as seen in the present study, might have important implications for a combined chemo and immunotherapy in such patients.


Journal of the American College of Cardiology | 2011

Aspirin Extrusion From Human Platelets Through Multidrug Resistance Protein-4-Mediated Transport Evidence of a Reduced Drug Action in Patients After Coronary Artery Bypass Grafting

Teresa Mattiello; Raffaella Guerriero; Lavinia Vittoria Lotti; Elisabetta Trifirò; Maria Pia Felli; Alessandro Barbarulo; Bruna Pucci; Paola Gazzaniga; Carlo Gaudio; Luigi Frati; Fabio M. Pulcinelli

OBJECTIVES In this study we investigate: 1) the role of multidrug resistance protein-4 (MRP4), an organic anion unidirectional transporter, in modulating aspirin action on human platelet cyclooxygenase (COX)-1; and 2) whether the impairment of aspirin-COX-1 interaction, found in coronary artery bypass grafting (CABG) patients, could be dependent on MRP4-mediated transport. BACKGROUND Platelets of CABG patients present a reduced sensitivity to aspirin despite in vivo and in vitro drug treatment. Aspirin is an organic anion and could be a substrate for MRP4. METHODS Intracellular aspirin concentration and drug COX-1 activity, measured by thrombin-induced thromboxane B2 (TxB2) production, were evaluated in platelets obtained from healthy volunteers (HV) and hematopoietic-progenitor cell cultures reducing or not reducing MRP4-mediated transport. Platelet MRP4 expression was evaluated, in platelets from HV and CABG patients, by dot-blot or by immunogold-electromicrographs or immunofluorescence-microscopy analysis. RESULTS Inhibition of MRP4-mediated transport by dipyridamole or Mk-571 increases aspirin entrapment and its in vitro effect on COX-1 activity (142.7 ± 34.6 pg/10(8) cells vs. 343.7 ± 169.3 pg/10⁸ cells TxB2-production). Platelets derived from megakaryocytes transfected with MRP4 small interfering ribonucleic acid have a higher aspirin entrapment and drug COX-1 activity. Platelets from CABG patients showed a high expression of MRP4 whose in vitro inhibition enhanced aspirin effect on COX-1 (349 ± 141 pg/10⁸ cells vs. 1,670 ± 646 pg/10⁸ cells TxB2-production). CONCLUSIONS Aspirin is a substrate for MRP4 and can be extruded from platelet through its transportation. Aspirin effect on COX-1 is little-related to MRP4-mediated aspirin transport in HV, but in CABG patients with MRP4 over-expression, its pharmacological inhibition enhances aspirin action in an efficient way.


Journal of the American College of Cardiology | 2011

Clinical ResearchAntiplatelet TherapyAspirin Extrusion From Human Platelets Through Multidrug Resistance Protein-4–Mediated Transport: Evidence of a Reduced Drug Action in Patients After Coronary Artery Bypass Grafting

Teresa Mattiello; Raffaella Guerriero; Lavinia Vittoria Lotti; Elisabetta Trifirò; Maria Pia Felli; Alessandro Barbarulo; Bruna Pucci; Paola Gazzaniga; Carlo Gaudio; Luigi Frati; Fabio M. Pulcinelli

OBJECTIVES In this study we investigate: 1) the role of multidrug resistance protein-4 (MRP4), an organic anion unidirectional transporter, in modulating aspirin action on human platelet cyclooxygenase (COX)-1; and 2) whether the impairment of aspirin-COX-1 interaction, found in coronary artery bypass grafting (CABG) patients, could be dependent on MRP4-mediated transport. BACKGROUND Platelets of CABG patients present a reduced sensitivity to aspirin despite in vivo and in vitro drug treatment. Aspirin is an organic anion and could be a substrate for MRP4. METHODS Intracellular aspirin concentration and drug COX-1 activity, measured by thrombin-induced thromboxane B2 (TxB2) production, were evaluated in platelets obtained from healthy volunteers (HV) and hematopoietic-progenitor cell cultures reducing or not reducing MRP4-mediated transport. Platelet MRP4 expression was evaluated, in platelets from HV and CABG patients, by dot-blot or by immunogold-electromicrographs or immunofluorescence-microscopy analysis. RESULTS Inhibition of MRP4-mediated transport by dipyridamole or Mk-571 increases aspirin entrapment and its in vitro effect on COX-1 activity (142.7 ± 34.6 pg/10(8) cells vs. 343.7 ± 169.3 pg/10⁸ cells TxB2-production). Platelets derived from megakaryocytes transfected with MRP4 small interfering ribonucleic acid have a higher aspirin entrapment and drug COX-1 activity. Platelets from CABG patients showed a high expression of MRP4 whose in vitro inhibition enhanced aspirin effect on COX-1 (349 ± 141 pg/10⁸ cells vs. 1,670 ± 646 pg/10⁸ cells TxB2-production). CONCLUSIONS Aspirin is a substrate for MRP4 and can be extruded from platelet through its transportation. Aspirin effect on COX-1 is little-related to MRP4-mediated aspirin transport in HV, but in CABG patients with MRP4 over-expression, its pharmacological inhibition enhances aspirin action in an efficient way.


Journal of Leukocyte Biology | 2007

The maturation potential of NK cell clones toward autologous dendritic cells correlates with HMGB1 secretion

Claudia Semino; Jenny Ceccarelli; Lavinia Vittoria Lotti; Maria Rosaria Torrisi; Giovanna Angelini; Anna Rubartelli

Interaction of NK cells with autologous immature dendritic cells (iDCs) results in reciprocal activation. We have previously reported that NK cells trigger iDC to polarize and secrete IL‐18; in turn, DC‐activated NK cells secrete the nuclear protein/proinflammatory cytokine high mobility group box protein 1 (HMGB1), which induces DC maturation and prevents DC from lysis. However, activated NK cells can also kill iDC. To investigate whether effector and maturative properties may coexist or segregate in different NK subsets, human NK cell clones were generated and analyzed for their effects on iDC. We found that the ability of different NK cell clones to induce iDC maturation is unlinked to their phenotypic and cytolytic features but correlates with the relocation of HMGB1 from nucleus to cytoplasm. “Maturative” NK cell clones secrete HMGB1 spontaneously. It is interesting that secretion is strongly enhanced by engagement of the surface molecule NKp30 but only slightly induced by triggering of the activating NK receptor CD16. However, culturing freshly isolated NK cells for 1 week with low doses of anti‐CD16 triggers the relocation of HMGB1 from nucleus to cytoplasm and its spontaneous secretion, resulting in a stronger maturation potential of the NK cells. Together, our data indicate that NK cells comprise functionally different subsets, endowed with different capacities to secrete HMGB1 and to induce maturation of autologous iDC. Nonetheless, maturation properties can be modulated by different stimuli. This suggests that depending on the environmental stimuli, NK/iDC interaction can lead to different outcomes, thus influencing immune response.


Cell Death and Disease | 2012

JNK2 is activated during ER stress and promotes cell survival.

Marisa Raciti; Lavinia Vittoria Lotti; Sandro Valia; Fabio M. Pulcinelli; L Di Renzo

Adaptation to endoplasmic reticulum (ER) stress relies on activation of the unfolded protein response (UPR) and induction of autophagy. Indeed, cells die if ER stress is not countered by the UPR. Here we show in U937 cells that the ER stressors tunicamycin and thapsigargin cause increased expression of c-Jun N-terminal kinase 2 (JNK2), which allows regulation of the UPR, whose silencing or pharmacological inhibition delays BiP (immunoglobulin heavy-chain binding protein) upregulation, and causes earlier and greater expression of CCAAT/enhancer-binding protein-homologous protein (CHOP). Furthermore, we show that pharmacological inhibition or silencing of JNK2 causes accumulation of both p62 and the acidic compartment, caspase 3 activation and apoptosis. Our results reveal that JNK2 prevents accumulation of the acidic compartment in U937 cells undergoing autophagic flux and, by this mechanism, it keeps stressed cells alive. Our findings highlight a potential role for JNK2 in tumor cell survival, senescence and neurodegenerative diseases, in which ER stress, autophagy and lysosome activity are known to interplay.

Collaboration


Dive into the Lavinia Vittoria Lotti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luigi Frati

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto Faggioni

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Pavan

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Mara Cirone

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Stefano Bonatti

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Roberta Gonnella

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Roberta Santarelli

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge