Lawrence Blas Perez
Novartis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lawrence Blas Perez.
Nature | 2016
Yan Chen; Matthew J. LaMarche; Ho Man Chan; Peter Fekkes; Garcia-Fortanet J; Acker Mg; Brandon Antonakos; Christine Hiu-Tung Chen; Zhouliang Chen; Vesselina G. Cooke; Zhan Deng; Fei F; Brant Firestone; Michelle Fodor; Cary Fridrich; Hui Gao; Denise Grunenfelder; Hao Hx; Jacob J; Samuel Ho; Kathy Hsiao; Zhao B. Kang; Rajesh Karki; Mitsunori Kato; Jay Larrow; La Bonte Lr; Francois Lenoir; Gang Liu; Shumei Liu; Dyuti Majumdar
The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy. Here we report the discovery of a highly potent (IC50 = 0.071 μM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS–ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers.
Journal of Medicinal Chemistry | 2009
Karen Miller-Moslin; Stefan Peukert; Rishi K. Jain; Michael McEwan; Rajesh Karki; Luis Llamas; Naeem Yusuff; Feng He; Yanhong Li; Yingchuan Sun; Miao Dai; Lawrence Blas Perez; Walter Michael; Tao Sheng; Huangshu Lei; Rui Zhang; Juliet Williams; Aaron Bourret; Arun Ramamurthy; Jing Yuan; Ribo Guo; Melissa Matsumoto; Anthony Vattay; Wieslawa Maniara; Adam Amaral; Marion Dorsch; Joseph F. Kelleher
Abnormal activation of the Hedgehog (Hh) signaling pathway has been linked to several types of human cancers, and the development of small-molecule inhibitors of this pathway represents a promising route toward novel anticancer therapeutics. A cell-based screen performed in our laboratories identified a new class of Hh pathway inhibitors, 1-amino-4-benzylphthalazines, that act via antagonism of the Smoothened receptor. A variety of analogues were synthesized and their structure-activity relationships determined. This optimization resulted in the discovery of high affinity Smoothened antagonists, one of which was further profiled in vivo. This compound displayed a good pharmacokinetic profile and also afforded tumor regression in a genetic mouse model of medulloblastoma.
Journal of Medicinal Chemistry | 2011
Michael Shultz; Xueying Cao; Christine Hiu-Tung Chen; Young Shin Cho; Nicole R. Davis; Joe Eckman; Jianmei Fan; Alex Fekete; Brant Firestone; Julie Flynn; Jack Green; Joseph D. Growney; Mats Holmqvist; Meier Hsu; Daniel Jansson; Lei Jiang; Paul Kwon; Gang Liu; Franco Lombardo; Qiang Lu; Dyuti Majumdar; Christopher Meta; Lawrence Blas Perez; Minying Pu; Tim Ramsey; Stacy W. Remiszewski; Suzanne Skolnik; Martin Traebert; Laszlo Urban; Vinita Uttamsingh
Histone deacetylase (HDAC) inhibitors have shown promise in treating various forms of cancer. However, many HDAC inhibitors from diverse structural classes have been associated with QT prolongation in humans. Inhibition of the human ether a-go-go related gene (hERG) channel has been associated with QT prolongation and fatal arrhythmias. To determine if the observed cardiac effects of HDAC inhibitors in humans is due to hERG blockade, a highly potent HDAC inhibitor devoid of hERG activity was required. Starting with dacinostat (LAQ824), a highly potent HDAC inhibitor, we explored the SAR to determine the pharmacophores required for HDAC and hERG inhibition. We disclose here the results of these efforts where a high degree of pharmacophore homology between these two targets was discovered. This similarity prevented traditional strategies for mitigating hERG binding/modulation from being successful and novel approaches for reducing hERG inhibition were required. Using a hERG homology model, two compounds, 11r and 25i, were discovered to be highly efficacious with weak affinity for the hERG and other ion channels.
Journal of Medicinal Chemistry | 2016
Jorge Garcia Fortanet; Christine Hiu-Tung Chen; Ying-Nan P. Chen; Zhouliang Chen; Zhan Deng; Brant Firestone; Peter Fekkes; Michelle Fodor; Pascal D. Fortin; Cary Fridrich; Denise Grunenfelder; Samuel Ho; Zhao B. Kang; Rajesh Karki; Mitsunori Kato; Nick Keen; Laura R. Labonte; Jay Larrow; Francois Lenoir; Gang Liu; Shumei Liu; Franco Lombardo; Dyuti Majumdar; Matthew John Meyer; Mark G. Palermo; Lawrence Blas Perez; Minying Pu; Timothy Michael Ramsey; William R. Sellers; Michael Shultz
SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealed the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein-ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.
ACS Medicinal Chemistry Letters | 2013
B. Barry Touré; Karen Miller-Moslin; Naeem Yusuff; Lawrence Blas Perez; Michael Dore; Carol Joud; Walter Michael; Lucian DiPietro; Simon van der Plas; Michael McEwan; Francois Lenoir; Madelene Y. Hoe; Rajesh Karki; Clayton Springer; John Sullivan; Kymberly Levine; Catherine Fiorilla; Xiaoling Xie; Raviraj Kulathila; Kara Herlihy; Dale Porter; Michael Scott Visser
Overexpression of the antiapoptotic members of the Bcl-2 family of proteins is commonly associated with cancer cell survival and resistance to chemotherapeutics. Here, we describe the structure-based optimization of a series of N-heteroaryl sulfonamides that demonstrate potent mechanism-based cell death. The role of the acidic nature of the sulfonamide moiety as it relates to potency, solubility, and clearance is examined. This has led to the discovery of novel heterocyclic replacements for the acylsulfonamide core of ABT-737 and ABT-263.
ACS Chemical Biology | 2018
Michelle Fodor; Edmund Price; Ping Wang; Hengyu Lu; Andreea Argintaru; Zhouliang Chen; Meir Glick; Huai-Xiang Hao; Mitsunori Kato; Robert Koenig; Jonathan R. LaRochelle; Gang Liu; Eric McNeill; Dyuti Majumdar; Gisele A. Nishiguchi; Lawrence Blas Perez; Gregory Paris; Christopher Quinn; Timothy Michael Ramsey; Martin Sendzik; Michael Shultz; Sarah Williams; Travis Stams; Stephen C. Blacklow; Michael G. Acker; Matthew J. LaMarche
SHP2 is a cytoplasmic protein tyrosine phosphatase encoded by the PTPN11 gene and is involved in cell proliferation, differentiation, and survival. Recently, we reported an allosteric mechanism of inhibition that stabilizes the auto-inhibited conformation of SHP2. SHP099 (1) was identified and characterized as a moderately potent, orally bioavailable, allosteric small molecule inhibitor, which binds to a tunnel-like pocket formed by the confluence of three domains of SHP2. In this report, we describe further screening strategies that enabled the identification of a second, distinct small molecule allosteric site. SHP244 (2) was identified as a weak inhibitor of SHP2 with modest thermal stabilization of the enzyme. X-ray crystallography revealed that 2 binds and stabilizes the inactive, closed conformation of SHP2, at a distinct, previously unexplored binding site-a cleft formed at the interface of the N-terminal SH2 and PTP domains. Derivatization of 2 using structure-based design resulted in an increase in SHP2 thermal stabilization, biochemical inhibition, and subsequent MAPK pathway modulation. Downregulation of DUSP6 mRNA, a downstream MAPK pathway marker, was observed in KYSE-520 cancer cells. Remarkably, simultaneous occupation of both allosteric sites by 1 and 2 was possible, as characterized by cooperative biochemical inhibition experiments and X-ray crystallography. Combining an allosteric site 1 inhibitor with an allosteric site 2 inhibitor led to enhanced pharmacological pathway inhibition in cells. This work illustrates a rare example of dual allosteric targeted protein inhibition, demonstrates screening methodology and tactics to identify allosteric inhibitors, and enables further interrogation of SHP2 in cancer and related pathologies.
Archive | 2001
Kenneth W. Bair; Michael A. Green; Lawrence Blas Perez; Stacy W. Remiszewski; Lidia Sambucetti; Richard William Versace; Sushil Kumar Sharma
Journal of Medicinal Chemistry | 2003
Stacy W. Remiszewski; Lidia Sambucetti; Kenneth W. Bair; John Bontempo; David Cesarz; Nagarajan Chandramouli; Ru Chen; Min Cheung; Susan Cornell-Kennon; Karl Dean; George Diamantidis; Michael A. Green; Kobporn Lulu Howell; Rina Kashi; Paul Kwon; Peter T Lassota; Mary S. Martin; Yin Mou; Lawrence Blas Perez; Sushil Kumar Sharma; Troy Smith; Eric Sorensen; Francis Taplin; Nancy Trogani; Richard William Versace; Heather Walker; Susan Weltchek-Engler; Alexander Wood; and Arthur Wu; Peter Atadja
Archive | 2004
Cynthia A. Fink; Lawrence Blas Perez; Timothy Michael Ramsey; Naeem Yusuff; Richard William Versace; David Bryant Batt; Michael Lloyd Sabio; Sunkyu Kim
Archive | 2011
Christopher Thomas Brain; Young Shin Cho; John William Giraldes; Bharat Lagu; Julian Levell; Michael Joseph Luzzio; Lawrence Blas Perez; Yaping Wang; Fan Yang