Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lawrence C. Smith is active.

Publication


Featured researches published by Lawrence C. Smith.


Molecular Reproduction and Development | 1998

Telophase enucleation : An improved method to prepare recipient cytoplasts for use in bovine nuclear transfer

Vilceu Bordignon; Lawrence C. Smith

The enucleation of oocytes to be used as host cytoplasts for embryo reconstruction by nuclear transfer is an important limiting step when cloning mammals. We propose an enucleation technique based on the removal of chromatin after oocyte activation, at the telophase stage, by aspirating the second polar body and surrounding cytoplasm. In a preliminary experiment to determine an optimal activation protocol, oocytes were matured for 26 and 30 hr and exposed for 5 min to 7% ethanol and/or for 3 hr at either 25 or 4°C. Relative to most activation treatments tested, oocytes matured for 30 hr and exposed to ethanol alone showed highest activation rates, as determined by low levels of H1 kinase activity within 90 min from exposure and high pronuclear formation (82%) after 12 hr of culture. No synergistic effect on activation rates was observed when oocytes also were exposed to reduced temperature after ethanol treatment. Microsurgical removal of the telophase‐stage chromatin in a small volume of cytoplasm adjacent to the second polar body was significantly more effective in enucleating than aspiration of a larger cytoplasm volume surrounding the first polar body of metaphase‐arrested oocytes (98% versus 59%; P < 0.01). Moreover, compared with a nuclear transfer protocol based on enucleation of metaphase‐arrested oocytes followed by aging and cooling, more (38% versus 16%; P < 0.001) and better‐quality blastocytes (126 versus 84 nuclei per blastocyst; P < 0.02) were obtained from embryos reconstructed using the telophase procedure. Higher development potential of embryos reconstructed by the telophase procedure may be attributed to (1) the selection of oocytes that activate and respond by extruding the second polar body, (2) avoiding the use of DNA dyes and ultraviolet irradiation, and (3) the limited removal of cytoplasm during enucleation. The ease with which telophase enucleation can be performed is likely to render this technique widely useful for research and practice on mammalian cloning. Mol. Reprod. Dev. 49:29–36, 1998.


Journal of Dairy Science | 2011

The low fertility of repeat-breeder cows during summer heat stress is related to a low oocyte competence to develop into blastocysts

R. M. Ferreira; H. Ayres; Marcos Roberto Chiaratti; M.L. Ferraz; A.B. Araújo; C.A. Rodrigues; Y.F. Watanabe; A.A. Vireque; D.C. Joaquim; Lawrence C. Smith; F. V. Meirelles; P. S. Baruselli

It was hypothesized the lower fertility of repeat-breeder (RB) Holstein cows is associated with oocyte quality and this negative effect is enhanced during summer heat stress (HS). During the summer and the winter, heifers (H; n=36 and 34, respectively), peak-lactation (PL; n=37 and 32, respectively), and RB (n=36 and 31, respectively) Holstein cows were subjected to ovum retrieval to assess oocyte recovery, in vitro embryonic developmental rates, and blastocyst quality [terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and total cell number]. The environmental temperature and humidity, respiration rate, and cutaneous and rectal temperatures were recorded in both seasons. The summer HS increased the respiration rate and the rectal temperature of PL and RB cows, and increased the cutaneous temperature and lowered the in vitro embryo production of Holstein cows and heifers. Although cleavage rate was similar among groups [H=51.7% ± 4.5 (n=375), PL=37.9% ± 5.1 (n=390), RB=41.9% ± 4.5 (n=666)], blastocyst rate was compromised by HS, especially in RB cows [H=30.3% ± 4.8 (n=244) vs. 23.3% ± 6.4 (n=150), PL=22.0% ± 4.7 (n=191) vs. 14.6% ± 7.6 (n=103), RB=22.5% ± 5.4 (n=413) vs. 7.9% ± 4.3 (n=177)]. Moreover, the fragmentation rate of RB blastocysts was enhanced during the summer, compared with winter [4.9% ± 0.7 (n=14) vs. 2.2% ± 0.2 (n=78)] and other groups [H=2.5% ± 0.7 (n=13), and PL=2.7% ± 0.6 (n=14)] suggesting that the association of RB fertility problems and summer HS may potentially impair oocyte quality. Our findings provide evidence of a greater sensitivity of RB oocytes to summer HS.


Biology of Reproduction | 2003

Transgene Expression of Green Fluorescent Protein and Germ Line Transmission in Cloned Calves Derived from In Vitro-Transfected Somatic Cells

Vilceu Bordignon; Rebecca Keyston; Anthoula Lazaris; Annie S. Bilodeau; José H.F. Pontes; Daniel R Arnold; Gilles Fecteau; Carol L. Keefer; Lawrence C. Smith

Abstract In vitro transfection of cultured cells combined with nuclear transfer currently is the most effective procedure to produce transgenic livestock. In the present study, bovine primary fetal fibroblasts were transfected with a green fluorescent protein (GFP)-reporter transgene and used as nuclear donor cells in oocyte reconstructions. Because cell synchronization protocols are less effective after transfection, activated oocytes may be more suitable as hosts for nuclear transfer. To examine the role of host cytoplasm on transgene expression and developmental outcome, GFP-expressing fibroblasts were fused to oocytes reconstructed either before (metaphase) or after (telophase) activation. Expression of GFP was examined during early embryogenesis, in tissues of cloned calves, and again during embryogenesis, after passage through germ line using semen from the transgenic cloned offspring. Regardless of the kind of host cytoplasm used, GFP became detectable at the 8- to 16-cell stage, approximately 80 h after reconstruction, and remained positive at all later stages. After birth, although cloned calves obtained through both procedures expressed GFP in all tissues examined, expression levels varied both between tissues and between cells within the same tissue, indicating a partial shutdown of GFP expression during cellular differentiation. Moreover, nonexpressing fibroblasts derived from transgenic offspring were unable to direct GFP expression after nuclear transfer and development to the blastocyst stage, suggesting an irreversible silencing of transgenes. Nonetheless, GFP was expressed in approximately half the blastocysts obtained with sperm from a transgenic clone, confirming transmission of the transgene through the germ line.


BMC Developmental Biology | 2009

In vitro culture and somatic cell nuclear transfer affect imprinting of SNRPN gene in pre- and post-implantation stages of development in cattle.

Joao Suzuki; Jacinthe Therrien; Réjean C. Lefebvre; Alan K. Goff; Lawrence C. Smith

BackgroundEmbryo in vitro manipulations during early development are thought to increase mortality by altering the epigenetic regulation of some imprinted genes. Using a bovine interspecies model with a single nucleotide polymorphism, we assessed the imprinting status of the small nuclear ribonucleoprotein polypeptide N (SNRPN) gene in bovine embryos produced by artificial insemination (AI), in vitro culture (IVF) and somatic cell nuclear transfer (SCNT) and correlated allelic expression with the DNA methylation patterns of a differentially methylated region (DMR) located on the SNRPN promoter.ResultsIn the AI group, SNRPN maternal expression is silenced at day 17 and 40 of development and a third of the alleles analyzed are methylated in the DMR. In the IVF group, maternal transcripts were identified at day 17 but methylation levels were similar to the AI group. However, day-40 fetuses in the IVF group showed significantly less methylation when compared to the AI group and SNRPN expression was mostly paternal in all fetal tissues studied, except in placenta. Finally, the SCNT group presented severe loss of DMR methylation in both day-17 embryos and 40 fetuses and biallelic expression was observed in all stages and tissues analyzed.ConclusionTogether these results suggest that artificial reproductive techniques, such as prolonged in vitro culture and SCNT, lead to abnormal reprogramming of imprinting of SNRPN gene by altering methylation levels at this locus.


Reproductive Biology and Endocrinology | 2003

Responsiveness of bovine cumulus-oocyte-complexes (COC) to porcine and recombinant human FSH, and the effect of COC quality on gonadotropin receptor and Cx43 marker gene mRNAs during maturation in vitro

Michele D. Calder; Anita Caveney; Lawrence C. Smith; Andrew J. Watson

Substantially less development to the blastocyst stage occurs in vitro than in vivo and this may be due to deficiencies in oocyte competence. Although a large proportion of bovine oocytes undergo spontaneous nuclear maturation, less is known about requirements for proper cytoplasmic maturation. Commonly, supraphysiological concentrations of FSH and LH are added to maturation media to improve cumulus expansion, fertilization and embryonic development. Therefore, various concentrations of porcine FSH (pFSH) and recombinant human FSH (rhFSH) were investigated for their effect on bovine cumulus expansion in vitro. Expression of FSHr, LHr and Cx43 mRNAs was determined in cumulus-oocyte complexes to determine whether they would be useful markers of oocyte competence. In serum-free media, only 1000 ng/ml pFSH induced marked cumulus expansion, but the effect of 100 ng/ml pFSH was amplified in the presence of 10% serum. In contrast, cumulus expansion occurred with 1 ng/ml rhFSH in the absence of serum. FSHr mRNA was highest at 0–6 h of maturation, then abundance decreased. Similarly, Cx43 mRNA expression was highest from 0–6 h but decreased by 24 h of maturation. However, the relative abundance of LHr mRNA did not change from 6–24 h of maturation. Decreased levels of FSHr, LHr and Cx43 mRNAs were detected in COCs of poorer quality. In conclusion, expansion of bovine cumulus occurred at low doses of rhFSH in serum-free media. In summary, FSHr, LHr and Cx43 mRNA abundance reflects COC quality and FSHr and Cx43 mRNA expression changes during in vitro maturation; these genes may be useful markers of oocyte developmental competence.


Genetics and Molecular Biology | 1999

Is the American Zebu really Bos indicus

F. V. Meirelles; Artur Jordão de Magalhães Rosa; Raysildo Barbosa Lôbo; Joaquim Mansano Garcia; Lawrence C. Smith; Francisco Alberto de Moura Duarte

The American continent was colonized in the 16th century by Europeans who first introduced cattle of Bos taurus origin. Accounts register introduction of Bos indicus cattle into South America in the 19th and continuing through the 20th century, and most reported imports were males derived from the Indian subcontinent. In the present study we show, by using mitochondrial DNA (mtDNA) polymorphism, major participation of matrilineages of taurus origin in the American Zebu purebred origin, i.e., 79, 73 and 100% for the Nellore, Gyr and Brahman breeds, respectively. Moreover, we have created a restriction map identifying polymorphism among B. taurus and B. indicus mtDNA using three restriction enzymes. Results are discussed concerning American Zebu origins and potential use of this information for investigating the contribution of cytoplasmic genes in cattle production traits.


Biology of Reproduction | 2006

Bovine SNRPN Methylation Imprint in Oocytes and Day 17 In Vitro-Produced and Somatic Cell Nuclear Transfer Embryos

Diana Lucifero; João Suzuki; Vilceu Bordignon; Josee Martel; Christian Vigneault; Jacinthe Therrien; Lawrence C. Smith; Jacquetta M. Trasler

Abstract Findings from recent studies have suggested that the low survival rate of animals derived via somatic cell nuclear transfer (SCNT) may be in part due to epigenetic abnormalities brought about by this procedure. DNA methylation is an epigenetic modification of DNA that is implicated in the regulation of imprinted genes. Genes subject to genomic imprinting are expressed monoallelically in a parent of origin-dependent manner and are important for embryo growth, placental function, and neurobehavioral processes. The vast majority of imprinted genes have been studied in mice and humans. Herein, our objectives were to characterize the bovine SNRPN gene in gametes and to compare its methylation profile in in vivo-produced, in vitro-produced, and SCNT-derived Day 17 elongating embryos. A CpG island within the 5′ region of SNRPN was identified and examined using bisulfite sequencing. SNRPN alleles were unmethylated in sperm, methylated in oocytes, and approximately 50% methylated in somatic samples. The examined SNRPN region appeared for the most part to be normally methylated in three in vivo-produced Day 17 embryos and in eight in vitro-produced Day 17 embryos examined, while alleles from Day 17 SCNT embryos were severely hypomethylated in seven of eight embryos. In this study, we showed that the SNRPN methylation profiles previously observed in mouse and human studies are also conserved in cattle. Moreover, SCNT-derived Day 17 elongating embryos were abnormally hypomethylated compared with in vivo-produced and in vitro-produced embryos, which in turn suggests that SCNT may lead to faulty reprogramming or maintenance of methylation imprints at this locus.


Reproduction, Fertility and Development | 2004

Role of the mitochondrial genome in preimplantation development and assisted reproductive technologies.

Lawrence C. Smith; Jacob Thundathil

Our fascination for mitochondria relates to their origin as symbiotic, semi-independent organisms on which we, as eukaryotic beings, rely nearly exclusively to produce energy for every cell function. Therefore, it is not surprising that these organelles play an essential role in many events during early development and in artificial reproductive technologies (ARTs) applied to humans and domestic animals. However, much needs to be learned about the interactions between the nucleus and the mitochondrial genome (mtDNA), particularly with respect to the control of transcription, replication and segregation during preimplantation. Nuclear-encoded factors that control transcription and replication are expressed during preimplantation development in mice and are followed by mtDNA transcription, but these result in no change in mtDNA copy number. However, in cattle, mtDNA copy number increases during blastocyst expansion and hatching. Nuclear genes influence the mtDNA segregation patterns in heteroplasmic animals. Because many ARTs markedly modify the mtDNA content in embryos, it is essential that their application is preceded by careful experimental scrutiny, using suitable animal models.


Equine Veterinary Journal | 2010

Isolation of equine bone marrow-derived mesenchymal stem cells: a comparison between three protocols

C. Bourzac; Lawrence C. Smith; P. Vincent; Guy Beauchamp; Jacques Lavoie; Sheila Laverty

REASON FOR PERFORMING THE STUDY There is a need to assess and standardise equine bone marrow (BM) mesenchymal stem cell (MSC) isolation protocols in order to permit valid comparisons between therapeutic trials at different sites. OBJECTIVE To compare 3 protocols of equine BM MSC isolation: adherence to a plastic culture dish (Classic) and 2 gradient density separation protocols (Percoll and Ficoll). MATERIALS AND METHODS BM aspirates were harvested from the sternum of 6 mares and MSCs isolated by all 3 protocols. The cell viability after isolation, MSC yield, number of MSCs attained after 14 days of culture and the functional characteristics (self-renewal (CFU) and multilineage differentiation capacity) were determined for all 3 protocols. RESULTS The mean +/- s.d. MSC yield from the Percoll protocol was significantly higher (6.8 +/- 3.8%) than the Classic protocol (1.3 +/- 0.7%). The numbers of MSCs recovered after 14 days culture per 10 ml BM sample were 24.0 +/- 12.1, 14.6 +/- 9.5 and 4.1 +/- 2.5 x 10(6) for the Percoll, Ficoll and Classic protocols, respectively, significantly higher for the Percoll compared with the Classic protocol. Importantly, no significant difference in cell viability or in osteogenic or chondrogenic differentiation was identified between the protocols. At Passage 0, cells retrieved with the Ficoll protocol had lower self-renewal capacity when compared with the Classic protocol but there was no significant difference between protocols at Passage 1. There were no significant differences between the 3 protocols for the global frequencies of CFUs at Passage 0 or 1. CONCLUSIONS AND CLINICAL RELEVANCE These data suggest that the Percoll gradient density separation protocol was the best in terms of MSC yield and self-renewal potential of the MSCs retrieved and that MSCs retrieved with the Ficoll protocol had the lowest self-renewal but only at passage 0. Then, the 3 protocols were equivalent. However, the Percoll protocol should be considered for equine MSC isolation to minimise culture time.


Theriogenology | 1997

GnRH improves the recovery rate and the in vitro developmental competence of oocytes obtained by transvaginal follicular aspiration from superstimulated heifers

V. Bordignon; N. Morin; J. Durocher; D. Bousquet; Lawrence C. Smith

In this study we assessed the effect of GnRH on the recovery rate, meiotic synchronization and in vitro developmental competence of oocytes recovered close to the expected time of ovulation. Twenty-three heifers were superstimulated with FSH, and luteolysis was induced by PGF(2alpha) injection 48 h after the start of treatment Twelve heifers received 200 microg GnRH at 34 h after PGF(2alpha) treatment, Blood samples were collected between 35 to 47 h after PGF(2alpha) administration to determine the time of the LH surge. Transvaginal follicular aspiration was performed at 60 h after PGF(2alpha), and the recovered oocytes were fertilized or fixed either immediately or after 24 h of maturation in vitro. GnRH-treated heifers showed an LH surge within 3 h after treatment, while only 4 of the 10 heifers in the control group exhibited an LH surge by 47 h after treatment with PGF(2alpha). The average number of large follicles (> 10 mm) was 21.3 +/- 2.3 and 19.3 +/- 2.4 for GnRH-treated and control heifers, respectively. The oocyte recovery rate was 87.7 and 63.1% (P < 0.05), respectively, and most of the cumulus-oocyte-complexes (COC) recovered from the 2 groups had an expanded cumulus (80.4 and 80.5%, respectively). Oocytes with an expanded cumulus from the GnRH group had completed meiotic maturation at higher rate than the controls (97 vs 20%;P < 0.05). In vitro development to the blastocyst stage of cumulus-expanded oocytes fertilized immediately after recovery was higher in GnRH-treated than in control heifers (60.3 vs 40.0%; P < 0.05). No difference was observed when oocytes with compact or expanded cumulus were matured in vitro for 24 h before fertilization. These results indicate that GnRH injections improve the oocyte recovery rate and that oocytes have a higher development competence than those obtained from non-GnRH-treated animals. We propose that this higher in vitro developmental competence may result from a more synchronous or further advanced meiotic maturation. However, due to the small number of oocytes in our study, we must emphasize that our findings on meiotic resumption are of preliminary nature.

Collaboration


Dive into the Lawrence C. Smith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felipe Perecin

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gilles Fecteau

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. F. Bressan

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge