Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lawrence E. Heisler is active.

Publication


Featured researches published by Lawrence E. Heisler.


Nature | 2016

A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns.

Faiyaz Notta; Michelle Chan-Seng-Yue; Mathieu Lemire; Yilong Li; Gavin Wilson; Ashton A. Connor; Robert E. Denroche; Sheng Ben Liang; Andrew M.K. Brown; Jaeseung C. Kim; Tao Wang; Jared T. Simpson; Timothy Beck; Ayelet Borgida; Nicholas Buchner; Dianne Chadwick; Sara Hafezi-Bakhtiari; John E. Dick; Lawrence E. Heisler; Michael A. Hollingsworth; Emin Ibrahimov; Gun Ho Jang; Jeremy Johns; Lars G T Jorgensen; Calvin Law; Olga Ludkovski; Ilinca Lungu; Karen Ng; Danielle Pasternack; Gloria M. Petersen

Pancreatic cancer, a highly aggressive tumour type with uniformly poor prognosis, exemplifies the classically held view of stepwise cancer development. The current model of tumorigenesis, based on analyses of precursor lesions, termed pancreatic intraepithelial neoplasm (PanINs) lesions, makes two predictions: first, that pancreatic cancer develops through a particular sequence of genetic alterations (KRAS, followed by CDKN2A, then TP53 and SMAD4); and second, that the evolutionary trajectory of pancreatic cancer progression is gradual because each alteration is acquired independently. A shortcoming of this model is that clonally expanded precursor lesions do not always belong to the tumour lineage, indicating that the evolutionary trajectory of the tumour lineage and precursor lesions can be divergent. This prevailing model of tumorigenesis has contributed to the clinical notion that pancreatic cancer evolves slowly and presents at a late stage. However, the propensity for this disease to rapidly metastasize and the inability to improve patient outcomes, despite efforts aimed at early detection, suggest that pancreatic cancer progression is not gradual. Here, using newly developed informatics tools, we tracked changes in DNA copy number and their associated rearrangements in tumour-enriched genomes and found that pancreatic cancer tumorigenesis is neither gradual nor follows the accepted mutation order. Two-thirds of tumours harbour complex rearrangement patterns associated with mitotic errors, consistent with punctuated equilibrium as the principal evolutionary trajectory. In a subset of cases, the consequence of such errors is the simultaneous, rather than sequential, knockout of canonical preneoplastic genetic drivers that are likely to set-off invasive cancer growth. These findings challenge the current progression model of pancreatic cancer and provide insights into the mutational processes that give rise to these aggressive tumours.


Nature Communications | 2015

A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing

Tyler Alioto; Ivo Buchhalter; Sophia Derdak; Barbara Hutter; Matthew Eldridge; Eivind Hovig; Lawrence E. Heisler; Timothy Beck; Jared T. Simpson; Laurie Tonon; Anne Sophie Sertier; Ann Marie Patch; Natalie Jäger; Philip Ginsbach; Ruben M. Drews; Nagarajan Paramasivam; Rolf Kabbe; Sasithorn Chotewutmontri; Nicolle Diessl; Christopher Previti; Sabine Schmidt; Benedikt Brors; Lars Feuerbach; Michael Heinold; Susanne Gröbner; Andrey Korshunov; Patrick Tarpey; Adam Butler; Jonathan Hinton; David Jones

As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy.


Nature | 2017

Genomic hallmarks of localized, non-indolent prostate cancer

Michael Fraser; Veronica Y. Sabelnykova; Takafumi N. Yamaguchi; Lawrence E. Heisler; Julie Livingstone; Vincent Huang; Yu Jia Shiah; Fouad Yousif; Xihui Lin; Andre P. Masella; Natalie S. Fox; Michael Xie; Stephenie D. Prokopec; Alejandro Berlin; Emilie Lalonde; Musaddeque Ahmed; Dominique Trudel; Xuemei Luo; Timothy Beck; Alice Meng; Junyan Zhang; Alister D'Costa; Robert E. Denroche; Haiying Kong; Shadrielle Melijah G. Espiritu; Melvin Lee Kiang Chua; Ada Wong; Taryne Chong; Michelle Sam; Jeremy Johns

Prostate tumours are highly variable in their response to therapies, but clinically available prognostic factors can explain only a fraction of this heterogeneity. Here we analysed 200 whole-genome sequences and 277 additional whole-exome sequences from localized, non-indolent prostate tumours with similar clinical risk profiles, and carried out RNA and methylation analyses in a subset. These tumours had a paucity of clinically actionable single nucleotide variants, unlike those seen in metastatic disease. Rather, a significant proportion of tumours harboured recurrent non-coding aberrations, large-scale genomic rearrangements, and alterations in which an inversion repressed transcription within its boundaries. Local hypermutation events were frequent, and correlated with specific genomic profiles. Numerous molecular aberrations were prognostic for disease recurrence, including several DNA methylation events, and a signature comprised of these aberrations outperformed well-described prognostic biomarkers. We suggest that intensified treatment of genomically aggressive localized prostate cancer may improve cure rates.


Nature | 2017

Tracing the origins of relapse in acute myeloid leukaemia to stem cells

Liran I. Shlush; Amanda Mitchell; Lawrence E. Heisler; Sagi Abelson; Stanley W.K. Ng; Aaron Trotman-Grant; Jessie J. F. Medeiros; Abilasha Rao-Bhatia; Ivana Jaciw-Zurakowsky; Rene Marke; Jessica McLeod; Monica Doedens; Gary D. Bader; Veronique Voisin; ChangJiang Xu; John D. McPherson; Thomas J. Hudson; Jean C.Y. Wang; Mark D. Minden; John E. Dick

In acute myeloid leukaemia, long-term survival is poor as most patients relapse despite achieving remission. Historically, the failure of therapy has been thought to be due to mutations that produce drug resistance, possibly arising as a consequence of the mutagenic properties of chemotherapy drugs. However, other lines of evidence have pointed to the pre-existence of drug-resistant cells. For example, deep sequencing of paired diagnosis and relapse acute myeloid leukaemia samples has provided direct evidence that relapse in some cases is generated from minor genetic subclones present at diagnosis that survive chemotherapy, suggesting that resistant cells are generated by evolutionary processes before treatment and are selected by therapy. Nevertheless, the mechanisms of therapy failure and capacity for leukaemic regeneration remain obscure, as sequence analysis alone does not provide insight into the cell types that are fated to drive relapse. Although leukaemia stem cells have been linked to relapse owing to their dormancy and self-renewal properties, and leukaemia stem cell gene expression signatures are highly predictive of therapy failure, experimental studies have been primarily correlative and a role for leukaemia stem cells in acute myeloid leukaemia relapse has not been directly proved. Here, through combined genetic and functional analysis of purified subpopulations and xenografts from paired diagnosis/relapse samples, we identify therapy-resistant cells already present at diagnosis and two major patterns of relapse. In some cases, relapse originated from rare leukaemia stem cells with a haematopoietic stem/progenitor cell phenotype, while in other instances relapse developed from larger subclones of immunophenotypically committed leukaemia cells that retained strong stemness transcriptional signatures. The identification of distinct patterns of relapse should lead to improved methods for disease management and monitoring in acute myeloid leukaemia. Moreover, the shared functional and transcriptional stemness properties that underlie both cellular origins of relapse emphasize the importance of developing new therapeutic approaches that target stemness to prevent relapse.


Nature Communications | 2017

Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories

Renea A. Taylor; Michael Fraser; Julie Livingstone; Shadrielle Melijah G. Espiritu; Heather Thorne; Vincent Huang; Winnie Lo; Yu Jia Shiah; Takafumi N. Yamaguchi; Ania Sliwinski; Sheri Horsburgh; Alice Meng; Lawrence E. Heisler; Nancy Yu; Fouad Yousif; Melissa Papargiris; Mitchell G. Lawrence; Lee Timms; Declan Murphy; Mark Frydenberg; Julia F. Hopkins; Damien Bolton; David Clouston; John D. McPherson; Theodorus van der Kwast; Paul C. Boutros; Gail P. Risbridger; Robert G. Bristow

Germline mutations in the BRCA2 tumour suppressor are associated with both an increased lifetime risk of developing prostate cancer (PCa) and increased risk of aggressive disease. To understand this aggression, here we profile the genomes and methylomes of localized PCa from 14 carriers of deleterious germline BRCA2 mutations (BRCA2-mutant PCa). We show that BRCA2-mutant PCa harbour increased genomic instability and a mutational profile that more closely resembles metastastic than localized disease. BRCA2-mutant PCa shows genomic and epigenomic dysregulation of the MED12L/MED12 axis, which is frequently dysregulated in metastatic castration-resistant prostate cancer (mCRPC). This dysregulation is enriched in BRCA2-mutant PCa harbouring intraductal carcinoma (IDC). Microdissection and sequencing of IDC and juxtaposed adjacent non-IDC invasive carcinoma in 10 patients demonstrates a common ancestor to both histopathologies. Overall we show that localized castration-sensitive BRCA2-mutant tumours are uniquely aggressive, due to de novo aberration in genes usually associated with metastatic disease, justifying aggressive initial treatment.


bioRxiv | 2014

A comprehensive multicenter comparison of whole genome sequencing pipelines using a uniform tumor-normal sample pair

Ivo Buchhalter; Barbara Hutter; Tyler Alioto; Timothy Beck; Paul C. Boutros; Benedikt Brors; Adam Butler; Sasithorn Chotewutmontri; Robert E. Denroche; Sophia Derdak; Nicolle Diessl; Lars Feuerbach; Akihiro Fujimoto; Susanne Gröbner; Marta Gut; Nicholas J. Harding; Michael Heinold; Lawrence E. Heisler; Jonathan Hinton; Natalie Jäger; David Jones; Rolf Kabbe; Andrey Korshunov; John D. McPherson; Andrew Menzies; Hidewaki Nakagawa; Christopher Previti; Keiran Raine; Paolo Ribeca; Sabine Schmidt

As next-generation sequencing becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Through the International Cancer Genome Consortium (ICGC), we compared sequencing pipelines at five independent centers (CNAG, DKFZ, OICR, RIKEN and WTSI) using a single tumor-blood DNA pair. Analyses by each center and with one standardized algorithm revealed significant discrepancies. Although most pipelines performed well for coding mutations, library preparation methods and sequencing coverage metrics clearly influenced downstream results. PCR-free methods showed reduced GC-bias and more even coverage. Increasing sequencing depth to ∼100x (two- to three-fold higher than current standards) showed a benefit, as long as the tumor:control coverage ratio remained balanced. To become part of routine clinical care, high-throughput sequencing must be globally compatible and comparable. This benchmarking exercise has highlighted several fundamental parameters to consider in this regard, which will allow for better optimization and planning of both basic and translational studies.


Nature Communications | 2017

Mitochondrial mutations drive prostate cancer aggression

Julia F. Hopkins; Veronica Y. Sabelnykova; Joachim Weischenfeldt; Ronald Simon; Jennifer A. Aguiar; Rached Alkallas; Lawrence E. Heisler; Junyan Zhang; John D. Watson; Melvin Lee Kiang Chua; Michael Fraser; Francesco Favero; Chris Lawerenz; Christoph Plass; Guido Sauter; John D. McPherson; Theodorus van der Kwast; Jan O. Korbel; Thorsten Schlomm; Robert G. Bristow; Paul C. Boutros

Nuclear mutations are well known to drive tumor incidence, aggression and response to therapy. By contrast, the frequency and roles of mutations in the maternally inherited mitochondrial genome are poorly understood. Here we sequence the mitochondrial genomes of 384 localized prostate cancer patients, and identify a median of one mitochondrial single-nucleotide variant (mtSNV) per patient. Some of these mtSNVs occur in recurrent mutational hotspots and associate with aggressive disease. Younger patients have fewer mtSNVs than those who diagnosed at an older age. We demonstrate strong links between mitochondrial and nuclear mutational profiles, with co-occurrence between specific mutations. For example, certain control region mtSNVs co-occur with gain of the MYC oncogene, and these mutations are jointly associated with patient survival. These data demonstrate frequent mitochondrial mutation in prostate cancer, and suggest interplay between nuclear and mitochondrial mutational profiles in prostate cancer.In prostate cancer, the role of mutations in the maternally-inherited mitochondrial genome are not well known. Here, the authors demonstrate frequent, age-dependent mitochondrial mutation in prostate cancer. Strong links between mitochondrial and nuclear mutational profiles are associated with clinical aggressivity.


bioRxiv | 2014

A Comprehensive Assessment of Somatic Mutation Calling in Cancer Genomes

Tyler Alioto; Sophia Derdak; Timothy Beck; Paul C. Boutros; Lawrence Bower; Ivo Buchhalter; Matthew Eldridge; Nicholas J. Harding; Lawrence E. Heisler; Eivind Hovig; David T. W. Jones; Andy G. Lynch; Sigve Nakken; Paolo Ribeca; Anne-Sophie Sertier; Jared T. Simpson; Paul T. Spellman; Patrick Tarpey; Laurie Tonon; Daniel Vodák; Takafumi N. Yamaguchi; Sergi Beltran Agullo; Marc Dabad; Robert E. Denroche; Philip Ginsbach; Simon Heath; Emanuele Raineri; Charlotte L Anderson; Benedikt Brors; Ruben M. Drews

The emergence of next generation DNA sequencing technology is enabling high-resolution cancer genome analysis. Large-scale projects like the International Cancer Genome Consortium (ICGC) are systematically scanning cancer genomes to identify recurrent somatic mutations. Second generation DNA sequencing, however, is still an evolving technology and procedures, both experimental and analytical, are constantly changing. Thus the research community is still defining a set of best practices for cancer genome data analysis, with no single protocol emerging to fulfil this role. Here we describe an extensive benchmark exercise to identify and resolve issues of somatic mutation calling. Whole genome sequence datasets comprising tumor-normal pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, were shared within the ICGC and submissions of somatic mutation calls were compared to verified mutations and to each other. Varying strategies to call mutations, incomplete awareness of sources of artefacts, and even lack of agreement on what constitutes an artefact or real mutation manifested in widely varying mutation call rates and somewhat low concordance among submissions. We conclude that somatic mutation calling remains an unsolved problem. However, we have identified many issues that are easy to remedy that are presented here. Our study highlights critical issues that need to be addressed before this valuable technology can be routinely used to inform clinical decision-making. Abbreviations and Definitions SSM Somatic Single-base Mutations or Simple Somatic Mutations, refers to a somatic single base change SIM Somatic Insertion/deletion Mutation CNV Copy Number Variant SV Structural Variant SNP Single Nucleotide Polymorphisms, refers to a single base variable position in the germline with a frequency of > 1% in the general population CLL Chronic Lymphocytic Leukaemia MB Medulloblastoma ICGC International Cancer Genome Consortium BM Benchmark aligner = mapper, these terms are used interchangeably


bioRxiv | 2018

Accurate Reference-Free Somatic Variant-Calling by Integrating Genomic, Sequencing and Population Data

Ren X. Sun; Christopher M Lalansingh; Shadrielle Melijah G. Espiritu; Cindy Q. Yao; Takafumi N. Yamaguchi; Stephenie D. Prokopec; Lesia Szyca; Kathleen E. Houlahan; Lawrence E. Heisler; Morgan Black; Constance H. Li; John W. Barrett; Anthony Charles Nichols; Paul C. Boutros

The detection of somatic single nucleotide variants (SNVs) is critical in both research and clinical applications. Studies of human cancer typically use matched normal (reference) samples from a distant tissue to increase SNV prediction accuracy. This process both doubles sequencing costs and poses challenges when reference samples are not readily available, such as for many cell-lines. To address these challenges, we created S22S: an approach for the prediction of somatic mutations without need for matched reference tissue. S22S takes underlying sequence data, augments them with genomic background context and population frequency information, and classifies SNVs as somatic or non-somatic. We validated S22S using primary tumor/normal pairs from four tumor types, spanning two different sequencing technologies. S22S robustly identifies somatic SNVs, with the area under the precision recall curve reaching 0.97 in kidney clear cell carcinoma, comparable to the best tumor/normal analysis pipelines. S22S is freely available at http://labs.oicr.on.ca/Boutros-lab/software/s22s.


Cancer Research | 2016

Abstract 98: The somatic mutational landscape of the mitochondrial genome in prostate cancer: evaluation of clinical impact

Julia F. Hopkins; Veronica Y. Sabelnykova; John D. Watson; Lawrence E. Heisler; Junyan Zhang; Michael Fraser; Theodorus van der Kwast; Robert G. Bristow; Paul C. Boutros

Prostate cancer remains the most prevalent and second most lethal non-skin cancer in men. Whole genome studies have provided important insights into specific driver genes, however most of these studies have not assessed one key portion of the genome: the mitochondrial genome. To gain a complete understanding of the most commonly-diagnosed sub-groups of prostate cancer: low- and intermediate-risk localized disease, we surveyed the mitochondrial genomes from next-generation sequencing (NGS) data of over 300 tumour samples from prostate cancer patients. These samples were mainly from prostate cancer patients with clinical Gleason Scores of 3+3, 3+4 and 4+3. All had at least 5 years of follow-up data (median > 8 years), allowing identification of clinical associations with identified somatic mutations via Cox Proportional Hazards modeling and machine-learning. Recurrent somatic mutations in mtDNA were identified, and these were associated with clinical outcomes. One third of patients were found to have a somatic mtDNA mutation. These mutations appear to be associated with age of patient. The mtDNA region with the majority of mutations was the regulatory D-loop region, although certain proteins had high numbers of mutations. Those somatic mutations occurring within the coding regions in general were nonsynonymous. Specific identified candidate somatic mutations were validated via Sanger sequencing. Clinical associations between somatic were also integrated with existing copy-number alteration (CNA) biomarkers using machine learning methods to evaluate performance. mtDNA mutations were also compared to identified aberrations (CNA, PGA, SNVs) within the nuclear genome to determine correlations between the two genomes, in addition to other somatic mutations or altered-expression in nuclear-encoded mitochondrial proteins. Taken together, these data demonstrate a key role for mitochondrial mutations in driving prostate cancer. Citation Format: Julia F. Hopkins, Veronica Y. Sabelnykova, John Watson, Lawrence E. Heisler, Junyan Zhang, Michael Fraser, Theodorus van der Kwast, Robert G. Bristow, Paul C. Boutros. The somatic mutational landscape of the mitochondrial genome in prostate cancer: evaluation of clinical impact. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 98.

Collaboration


Dive into the Lawrence E. Heisler's collaboration.

Top Co-Authors

Avatar

Paul C. Boutros

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Michael Fraser

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Takafumi N. Yamaguchi

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fouad Yousif

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Robert E. Denroche

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Timothy Beck

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Julie Livingstone

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Junyan Zhang

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge