Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lawrence F. Colwell is active.

Publication


Featured researches published by Lawrence F. Colwell.


Nature | 2006

Platensimycin is a selective FabF inhibitor with potent antibiotic properties

Jun Wang; Stephen M. Soisson; Katherine Young; Wesley L. Shoop; Srinivas Kodali; Andrew Galgoci; Ronald E. Painter; Gopalakrishnan Parthasarathy; Yui S. Tang; Richard D. Cummings; Sookhee Ha; Karen Dorso; Mary Motyl; Hiranthi Jayasuriya; John G. Ondeyka; Kithsiri Herath; Chaowei Zhang; Lorraine D. Hernandez; John J. Allocco; Angela Basilio; José R. Tormo; Olga Genilloud; Francisca Vicente; Fernando Pelaez; Lawrence F. Colwell; Sang Ho Lee; Bruce Michael; Thomas J. Felcetto; Charles Gill; Lynn L. Silver

Bacterial infection remains a serious threat to human lives because of emerging resistance to existing antibiotics. Although the scientific community has avidly pursued the discovery of new antibiotics that interact with new targets, these efforts have met with limited success since the early 1960s. Here we report the discovery of platensimycin, a previously unknown class of antibiotics produced by Streptomyces platensis. Platensimycin demonstrates strong, broad-spectrum Gram-positive antibacterial activity by selectively inhibiting cellular lipid biosynthesis. We show that this anti-bacterial effect is exerted through the selective targeting of β-ketoacyl-(acyl-carrier-protein (ACP)) synthase I/II (FabF/B) in the synthetic pathway of fatty acids. Direct binding assays show that platensimycin interacts specifically with the acyl-enzyme intermediate of the target protein, and X-ray crystallographic studies reveal that a specific conformational change that occurs on acylation must take place before the inhibitor can bind. Treatment with platensimycin eradicates Staphylococcus aureus infection in mice. Because of its unique mode of action, platensimycin shows no cross-resistance to other key antibiotic-resistant strains tested, including methicillin-resistant S. aureus, vancomycin-intermediate S. aureus and vancomycin-resistant enterococci. Platensimycin is the most potent inhibitor reported for the FabF/B condensing enzymes, and is the only inhibitor of these targets that shows broad-spectrum activity, in vivo efficacy and no observed toxicity.


Antimicrobial Agents and Chemotherapy | 2004

A 7-Deaza-Adenosine Analog Is a Potent and Selective Inhibitor of Hepatitis C Virus Replication with Excellent Pharmacokinetic Properties

David B. Olsen; Anne B. Eldrup; Linda Bartholomew; Balkrishen Bhat; Michele Bosserman; Alessandra Ceccacci; Lawrence F. Colwell; John F. Fay; Osvaldo A. Flores; Krista Getty; Jay A. Grobler; Robert L. Lafemina; Eric J. Markel; Giovanni Migliaccio; Marija Prhavc; Mark Stahlhut; Joanne E. Tomassini; Malcolm Maccoss; Daria J. Hazuda; Steven S. Carroll

ABSTRACT Improved treatments for chronic hepatitis C virus (HCV) infection are needed due to the suboptimal response rates and deleterious side effects associated with current treatment options. The triphosphates of 2′-C-methyl-adenosine and 2′-C-methyl-guanosine were previously shown to be potent inhibitors of the HCV RNA-dependent RNA polymerase (RdRp) that is responsible for the replication of viral RNA in cells. Here we demonstrate that the inclusion of a 7-deaza modification in a series of purine nucleoside triphosphates results in an increase in inhibitory potency against the HCV RdRp and improved pharmacokinetic properties. Notably, incorporation of the 7-deaza modification into 2′-C-methyl-adenosine results in an inhibitor with a 20-fold-increased potency as the 5′-triphosphate in HCV RdRp assays while maintaining the inhibitory potency of the nucleoside in the bicistronic HCV replicon and with reduced cellular toxicity. In contrast, while 7-deaza-2′-C-methyl-GTP also displays enhanced inhibitory potency in enzyme assays, due to poor cellular penetration and/or metabolism, the nucleoside does not inhibit replication of a bicistronic HCV replicon in cell culture. 7-Deaza-2′-C-methyl-adenosine displays promising in vivo pharmacokinetics in three animal species, as well as an acute oral lethal dose in excess of 2,000 mg/kg of body weight in mice. Taken together, these data demonstrate that 7-deaza-2′-C-methyl-adenosine is an attractive candidate for further investigation as a potential treatment for HCV infection.


Bioorganic & Medicinal Chemistry Letters | 2000

Human β3-adrenergic receptor agonists containing 1,2,3-triazole-substituted benzenesulfonamides

Linda Brockunier; Emma R. Parmee; Hyun O. Ok; Mari R. Candelore; Margaret A. Cascieri; Lawrence F. Colwell; Liping Deng; William P. Feeney; Michael J. Forrest; Gary J. Hom; D. Euan MacIntyre; Laurie Tota; Matthew J. Wyvratt; Michael H. Fisher; Ann E. Weber

Compounds containing a 1,2,3-triazole-substituted benzenesulfonamide were prepared and found to be potent and selective human beta3-adrenergic receptor agonists. The most interesting compound, trifluoromethylbenzyl analogue 12e (beta3 EC50 = 3.1 nM with >1500-fold selectivity over binding to both beta1- and beta2 receptors), stimulates lipolysis in the rhesus monkey (ED50 = 0.36 mg/kg) and is 25% orally bioavailable in the dog.


Journal of Medicinal Chemistry | 2009

Discovery of (2R)-2-(3-{3-[(4-Methoxyphenyl)carbonyl]-2-methyl-6-(trifluoromethoxy)-1H-indol-1-yl}phenoxy)butanoic Acid (MK-0533): A Novel Selective Peroxisome Proliferator-Activated Receptor γ Modulator for the Treatment of Type 2 Diabetes Mellitus with a Reduced Potential to Increase Plasma and Extracellular Fluid Volume

John J. Acton; Taro E. Akiyama; Ching H. Chang; Lawrence F. Colwell; Sheryl D. Debenham; Thomas W. Doebber; Monica Einstein; Kun Liu; Margaret E. McCann; David E. Moller; Eric S. Muise; Yejun Tan; John R. Thompson; Kenny K. Wong; Margaret Wu; Libo Xu; Peter T. Meinke; Joel P. Berger; Harold B. Wood

Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists are used to treat type 2 diabetes mellitus (T2DM). Widespread use of PPARgamma agonists has been prevented due to adverse effects including weight gain, edema, and increased risk of congestive heart failure. Selective PPARgamma modulators (SPPARgammaMs) have been identified that have antidiabetic efficacy and reduced toxicity in preclinical species. In comparison with PPARgamma full agonists, SPPARgammaM 6 (MK0533) displayed diminished maximal activity (partial agonism) in cell-based transcription activation assays and attenuated gene signatures in adipose tissue. Compound 6 exhibited comparable efficacy to rosiglitazone and pioglitazone in vivo. However, with regard to the induction of untoward events, 6 displayed no cardiac hypertrophy, attenuated increases in brown adipose tissue, minimal increases in plasma volume, and no increases in extracellular fluid volume in vivo. Further investigation of 6 is warranted to determine if the improvement in mechanism-based side effects observed in preclinical species will be recapitulated in humans.


Bioorganic & Medicinal Chemistry Letters | 1999

Human β3 andrenergic receptor agonists containing imidazolidinone and imidazolone benzenesulfonamides

Elizabeth M. Naylor; Emma R. Parmee; Vincent J. Colandrea; Leroy Perkins; Linda Brockunier; Mari R. Candelore; Margaret A. Cascieri; Lawrence F. Colwell; Liping Deng; William P. Feeney; Michael J. Forrest; Gary J. Hom; D. Euan MacIntyre; Catherine D. Strader; Laurie Tota; Pei-Ran Wang; Matthew J. Wyvratt; Michael H. Fisher; Ann E. Weber

The cyclopentylpropylimidazolidinone L-766,892 is a potent beta3 AR agonist (EC50 5.7 nM, 64% activation) with 420- and 130-fold selectivity over binding to the beta1 and beta2 ARs, respectively. In anesthetized rhesus monkeys, L-766,892 elicited dose-dependent hyperglycerolemia (ED50 0.1 mg/kg) with minimal effects on heart rate.


Bioorganic & Medicinal Chemistry Letters | 2000

Synthesis and SAR of benzyl and phenoxymethylene oxadiazole benzenesulfonamides as selective β3 adrenergic receptor agonist antiobesity agents

Tesfaye Biftu; Dennis Feng; Gui-Bai Liang; Howard C. H. Kuo; Xiaoxia Qian; Elizabeth M. Naylor; Vincent J. Colandrea; Mari R. Candelore; Margaret A. Cascieri; Lawrence F. Colwell; Michael J. Forrest; Gary J. Hom; D. Euan MacIntyre; Ralph A. Stearns; Catherine D. Strader; Matthew J. Wyvratt; Michael H. Fisher; Ann E. Weber

Benzyl and phenoxymethylene substituted oxadiazoles are potent and orally bioavailable beta3 adrenergic receptor (AR) agonists. The 4-trifluormethoxy substituted 5-benzyl oxadiazole 5f has an EC50 of 8 nM in the beta3 AR agonist assay with 100-fold selectivity over beta1 and beta2 AR binding inhibition activity. Its oral bioavailability in dogs is 30 +/- 4%, with a half-life of 3.8 +/- 0.4 h. In the anesthetized rhesus, 5f evoked a dose-dependent glycerolemia (ED50Gly = 0.15 mg/kg). Under these conditions a heart rate increase of 15% was observed at a dose level of 10 mg/kg.


Bioorganic & Medicinal Chemistry Letters | 2009

Nocathiacin analogs: Synthesis and antibacterial activity of novel water-soluble amides

Libo Xu; Amy K. Farthing; James F. Dropinski; Peter T. Meinke; Christine McCallum; Penny Sue Leavitt; Emily Hickey; Lawrence F. Colwell; John F. Barrett; Kun Liu

Novel water-soluble amide analogs were synthesized from nocathiacin I (1) through the formation of the carboxylic acid intermediate followed by coupling to primary or secondary amines. Several compounds with potent antibacterial activity and adequate water solubility were identified. Of these, compound 19 was selected for more extensive evaluation because of its excellent in vitro antibacterial activity and in vivo efficacy, as well as clean off-target screening.


Bioorganic & Medicinal Chemistry Letters | 2000

Discovery of an orally bioavailable alkyl oxadiazole β3 adrenergic receptor agonist

Danqing D. Feng; Tesfaye Biftu; Mari R. Candelore; Margaret A. Cascieri; Lawrence F. Colwell; Liping Deng; William P. Feeney; Michael J. Forrest; Gary J. Hom; D. Euan MacIntyre; Randall R. Miller; Ralph A. Stearns; Catherine D. Strader; Laurie Tota; Matthew J. Wyvratt; Michael H. Fisher; Ann E. Weber

5-n-Pentyl oxadiazole substituted benzenesulfonamide 8 is a potent and selective beta3 adrenergic receptor agonist (beta3 EC50 = 23 nM, beta1 IC50 = 3000 nM, beta2 IC50 = 3000 nM). The compound has high oral bioavailability in dogs (62%) and rats (36%) and is among the most orally bioavailable beta3 adrenergic receptor agonists reported to date.


Bioorganic & Medicinal Chemistry Letters | 2000

Potent, selective 3-pyridylethanolamine β3 adrenergic receptor agonists possessing a thiazole benzenesulfonamide pharmacophore

Robert J. Mathvink; J.Samuel Tolman; Dawn Chitty; Mari R. Candelore; Margaret A. Cascieri; Lawrence F. Colwell; Liping Deng; William P. Feeney; Michael J. Forrest; Gary J. Hom; D. Euan MacIntyre; Laurie Tota; Matthew J. Wyvratt; Michael H. Fisher; Ann E. Weber

A series of thiazole benzenesulfonamide-substituted 3-pyridylethanolamines was prepared and evaluated for their human beta3 adrenergic receptor agonist activity. Incorporation of aryl and heteroaryl substitution in the 4-position of the thiazole ring resulted in a number of highly potent and selective beta3 agonists. Results of preliminary in vivo evaluation of several of these compounds is described.


Bioorganic & Medicinal Chemistry Letters | 2000

Substituted oxazole benzenesulfonamides as potent human β3 adrenergic receptor agonists

Hyun O. Ok; L.B. Reigle; Mari R. Candelore; Margaret A. Cascieri; Lawrence F. Colwell; Liping Deng; William P. Feeney; Michael J. Forrest; Gary J. Hom; D. E. Macintyre; Catherine D. Strader; Laurie Tota; Pei-Ran Wang; Matthew J. Wyvratt; Michael H. Fisher; Ann E. Weber

As a part of our investigation into the development of orally bioavailable beta3 adrenergic receptor agonists, we have identified a series of substituted oxazole derivatives that are potent beta3 agonists with excellent selectivity against other beta receptors. Several of these compounds showed excellent oral bioavailability in dogs. One example, cyclopentylethyloxazole 5f is a potent beta3 agonist (EC50 = 14 nM, 84% activation) with 340-fold and 160-fold selectivity over beta1 and beta2 receptors, respectively, and has 38% oral bioavailability in dogs.

Researchain Logo
Decentralizing Knowledge