Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lawrence H. Herbst is active.

Publication


Featured researches published by Lawrence H. Herbst.


Annual Review of Fish Diseases | 1994

Fibropapillomatosis of marine turtles

Lawrence H. Herbst

Abstract Cutaneous fibropapillomatosis in green sea turtles, Chelonia mydas (GTFP), was first reported over 50 years ago. In the last decade, GTFP has emerged as a significant worldwide epizootic with prevalences as high as 92% in some green turtle populations. Lesions similar to GTFP have been observed in other marine turtle species including olive ridleys, Lepidochelys olivacea , flatbacks, Natator depressus , and loggerheads, Caretta caretta , but disease in these species occurs at lower frequencies and is less well documented. The etiology of GTFP is unknown, and a variety of hypotheses concerning the possible etiology and pathogenesis of GTFP have been proposed and are discussed in this paper. Possible etiologies include viruses, metazoan parasites, ultraviolet radiation, and chemical carcinogens. Recent evidence from controlled transmission experiments implicates a filterable infectious agent as the primary etiology of GTFP. A herpesvirus has been identified in some lesions but has not been isolated and cultured; consequently, Kochs postulates have not yet been fulfilled for this agent. The epizootiology and pathogenesis of GTFP are poorly understood. Epizootiologic evidence, while limited to a few field studies, suggests that environmental conditions in certain near-shore marine habitats favor a high prevalence of disease expression. The possibility that immune system modulators play a role in the persistence and severity of this disease is discussed. Detailed investigations of the epizootiology of GTFP must await identification of the etiologic agent and development of specific diagnostic tests. In addition, until immune function tests can be developed and validated for free-ranging turtles, hypotheses about the role of immune system dysfunction in GTFP epizootics cannot be tested.


Journal of Wildlife Diseases | 2005

DISTRIBUTION OF CHELONID FIBROPAPILLOMATOSIS-ASSOCIATED HERPESVIRUS VARIANTS IN FLORIDA: MOLECULAR GENETIC EVIDENCE FOR INFECTION OF TURTLES FOLLOWING RECRUITMENT TO NERITIC DEVELOPMENTAL HABITATS

Ada R. Ene; Mei Su; Shefali Lemaire; Corinne Rose; Susan Schaff; Richie Moretti; Jack Lenz; Lawrence H. Herbst

Marine turtle fibropapillomatosis is associated with chelonid fibropapilloma-associated herpesvirus (C-FP-HV) and commonly affects juvenile green turtles (Chelonia mydas) in neritic (nearshore) habitats. Green turtles have a complex life history, characterized by shifts in trophic level as well as habitat during ontogeny. Thus, several hypotheses can be proposed for when turtles become infected with C-FP-HV. They may acquire the virus at an early stage in the life cycle, including prenatal, hatchling, or the posthatchling pelagic stages. Alternatively, they may become infected later in life after they emigrate from the open ocean to neritic habitats. Each hypothesis generates predictions about the spatial distribution of genetic variants of C-FP-HV among nearshore sites within a region. Sequencing of polymerase chain reaction–amplified viral DNA from fibropapillomas of individual turtles was used to genotype the viral variants present in marine turtles from different coastal areas in Florida. We found four distinct virus variants (A, B, C, and D), two of which (A and C) were present in multiple turtle species. Green turtles in Florida were infected with variants A, B, and C. Variant A was found in green turtles from all three areas. Outside the Indian River Lagoon, variant A was most commonly detected and was found in >94% of diseased green turtles and 70% of loggerhead sea turtles (Caretta caretta) in the Florida Bay/Florida Keys. However, in the Indian River Lagoon, variant B was found in >94% of affected green turtles. Variant B was not detected outside of the Indian River system. Chi-square analysis strongly supported (P<0.001) an association between viral variant distribution in green turtles and location. On the basis of the assumption that juvenile green turtles found in Floridas west-central coast, Florida Keys, and Indian River Lagoon areas represented recruits from a mixed pelagic population, we expected that the distribution of viral variants in these turtles would be relatively homogeneous among locations; this would correspond to infection in the earlier phases of their life cycle. The heterogeneous distribution of viral variants in green turtle tumors from different Florida coastal locations strongly supports the hypothesis that, during epizootics, turtles are infected with specific C-FP-HV variants after they arrive as juveniles in neritic habitats. The conclusion that C-FP-HV is acquired after turtles recruit to nearshore habitats should help focus further research efforts on understanding the mechanisms of transmission and raises the possibility that the effect of fibropapillomatosis on turtle populations might be reduced by management strategies designed to break the cycle of transmission in these locations.


Virology | 2009

Genomic characterization of two novel reptilian papillomaviruses, Chelonia mydas papillomavirus 1 and Caretta caretta papillomavirus 1

Lawrence H. Herbst; Jack Lenz; Koenraad Van Doorslaer; Zigui Chen; Brian A. Stacy; James F.X. Wellehan; Charles A. Manire; Robert D. Burk

In this paper we describe the characterization of the genomes of two sea turtle papillomaviruses, Chelonia mydas PV (CmPV-1) and Caretta caretta PV (CcPV-1). The isolation and sequencing of the first non-avian reptilian PVs extend the evolutionary history of PVs to include all amniotes. PVs have now been described in mammals, birds and non-avian reptiles. The chelonian PVs form a distinct clade most closely related to the avian PVs. Unlike the avian PVs, both chelonian PVs have canonical E6 and E7 ORFs, indicating that these genes were present in the common ancestor to mammalian and non-mammalian amniote PVs. Rates of evolution among the non-mammalian PVs were generally slower than those estimated for mammalian PVs, perhaps due to lower metabolic rates among the ectothermic reptiles.


Journal of Clinical Microbiology | 2003

Characterization of Mycobacterium montefiorense sp. nov., a Novel Pathogenic Mycobacterium from Moray Eels That Is Related to Mycobacterium triplex

Michael H. Levi; John Bartell; Leanne Gandolfo; Sandra C. Smole; Sylvia F. Costa; Louis M. Weiss; Linda K. Johnson; Gerard Osterhout; Lawrence H. Herbst

ABSTRACT The characterization of a novel Mycobacterium sp. isolated from granulomatous skin lesions of moray eels is reported. Analysis of the hsp65 gene, small-subunit rRNA gene, rRNA spacer region, and phenotypic characteristics demonstrate that this organism is distinct from its closest genetic match, Mycobacteriumtriplex, and it has been named M. montefiorense sp. nov.


Infection and Immunity | 2001

Granulomatous skin lesions in moray eels caused by a novel Mycobacterium species related to Mycobacterium triplex.

Lawrence H. Herbst; Sylvia F. Costa; Louis M. Weiss; Linda K. Johnson; John Bartell; Raymond Davis; Michael Walsh; Michael H. Levi

ABSTRACT An outbreak of granulomatous dermatitis was investigated in a captive population of moray eels. The affected eels had florid skin nodules concentrated around the head and trunk. Histopathological examination revealed extensive granulomatous inflammation within the dermis and subcutaneous fascial plane between the fat and axial musculature. Acid-fast rods were detected within the smallest lesions, which were presumably the ones that had developed earliest. Eventually, after several months of incubation at room temperature, a very slowly growing acid-fast organism was isolated. Sequencing of the 16S rRNA gene identified it as a Mycobacterium species closely related (0.59% divergence) to M. triplex, an SAV mycobacterium. Intradermal inoculation of healthy green moray eels with this organism reliably reproduced the lesion. Experimentally induced granulomatous dermatitis appeared within 2 weeks of inoculation and slowly but progressively expanded during the 2 months of the experiment. Live organisms were recovered from these lesions at all time points, fulfilling Kochs postulates for this bacterium. In a retrospective study of tissues collected between 1993 and 1999 from five spontaneous disease cases, acid-fast rods were consistently found within lesions, and a nested PCR for the rRNA gene also demonstrated the presence of mycobacteria within affected tissues.


Journal of Wildlife Diseases | 1998

Serological association between spirorchidiasis, herpesvirus infection, and fibropapillomatosis in green turtles from Florida.

Lawrence H. Herbst; Ellis C. Greiner; Llewellyn M. Ehrhart; Dean A. Bagley; Paul A. Klein

Serodiagnostic tests for detecting green turtle (Chelonia mydas) antibody responses were developed to test the strength of association between exposure to spirorchid trematode antigens or herpesvirus antigens and having green turtle fibropapillomatosis (GTFP). Plasma samples from 46 captive-reared green turtles, including paired pre- and 1-yr post-inoculation samples from 12 turtles with experimentally induced GTFP, were found by enzyme-linked immunosorbent assay (ELISA) to be negative for antibodies to adult spirorchid (Learedius learedi) antigens. In contrast, all 12 turtles that developed experimentally induced GTFP converted within 1 yr from having negative to positive antibody reactivity to GTFP-associated herpesvirus antigens, whereas the three controls and four turtles that failed to develop tumors remained negative. Plasma samples from 104 free-ranging green turtles from two Florida (USA) coastal feeding grounds with different GTFP prevalences were tested by ELISA for antibodies to L. learedi adult antigens; and there was no statistically significant association between antibody prevalence and sampling site. When a low optical density cutoff value (0.15) was used to interpret ELISA results, 98% of the turtles from each site were spirorchid antibody-positive and there was no association between antibody reactivity to spirorchids and GTFP status. When a higher negative cutoff value was used, however, a statistically significant association between antibody reactivity to spirorchids and GTFP-free status was found. These results suggest that spirorchids do not have a role in GTFP pathogenesis. All 20 of the tumor-bearing lagoon turtles had antibodies to herpesvirus antigens whereas only two (10%) of the tumor-free reef turtles had detectable anti-herpesvirus reactivity. The strong association between antibody reactivity to herpesvirus antigens and GTFP status in both captive-reared and free-ranging turtles is consistent with the hypothesis that the transmissible agent that causes GTFP is a herpesvirus.


Veterinary Immunology and Immunopathology | 1995

Monoclonal antibodies for the measurement of class-specific antibody responses in the green turtle, Chelonia mydas.

Lawrence H. Herbst; Paul A. Klein

Monoclonal antibodies (Mabs) were developed against the known immunoglobulin classes of the green turtle, Chelonia mydas. Plasma protein fractions enriched for 5.7S IgY, 7S IgY, and IgM turtle immunoglobulins were used to immunize Balb/c mice for hybridoma production and for hybridoma screening. Fifteen hybridomas produced Mabs with specificity for turtle immunoglobulins and for affinity purified dinitrophenol (DNP) specific turtle antibodies. Three Mabs specific for either turtle 5.7S IgY heavy chain (HL814), 7S IgY heavy chain (HL857), or IgM heavy chain (HL846) were purified and used in an enzyme-linked immunosorbent assay (ELISA) to measure antibody responses in two turtles immunized with 2,4-dinitrophenylated bovine serum albumin (DNP-BSA) over a 10 month period. In both turtles the 7S IgY antibody response developed within 5 weeks of the first inoculation and remained high over the following 9 months. The 5.7S IgY antibody response was detected in one turtle at 3-4 months and in the other at 8 months, and reached high levels in both individuals by 10 months. The IgM responses were difficult to interpret. One turtle had pre-inoculation anti-DNP IgM antibody in its plasma and the other developed only a weak, transient response at about 4 months. The class-specific antibody activity in immune turtle plasma could be strongly inhibited by soluble DNP or by rabbit anti-DNP specific antiserum, showing that these antibody responses were directed predominantly to the DNP hapten on the DNP-BSA antigen. Antibody responses to the BSA carrier could not be detected in either turtle over the course of the immunization. Mab HL814, specific for an epitope on the 5.7S green turtle immunoglobulin heavy chain, will be useful for characterizing the molecular relationships of 5.7S, 7S and IgM heavy chains and the role of 5.7S antibody in humoral immunity in this species. All anti-turtle Ig Mabs were screened against the plasma globulins of Loggerhead (Caretta caretta), Olive Ridley (Lepidochelys olivacea), Kemps Ridley (Lepidochelys kempi), Hawksbill (Eretmochelys imbricata), and Leatherback (Dermochelys coriacea). While the Mabs specific for IgM and 5.7S IgY reacted only with the green turtle, two Mabs specific for light chain reacted with all species except the leatherback, and nine mabs specific for 7S IgY heavy chain reacted with all five species. Thus, these Mabs may be useful for immunodiagnostic applications in these endangered species as well.


Journal of Wildlife Diseases | 2000

Persistent Infectivity of a Disease-Associated Herpesvirus in Green Turtles after Exposure to Seawater

Sadie S. Curry; Daniel R. Brown; Jack M. Gaskin; Elliott R. Jacobson; Llewellyn M. Ehrhart; Silvia Blahak; Lawrence H. Herbst; Paul A. Klein

Herpesviruses are associated with several diseases of marine turtles including lung-eye-trachea disease (LETD) and gray patch disease (GPD) of green turtles (Chelonia mydas) and fibropapillomatosis (FP) of green, loggerhead (Caretta caretta), and olive ridley turtles (Lepidochelys olivacea). The stability of chelonian herpesviruses in the marine environment, which may influence transmission, has not been previously studied. In these experiments, LETD-associated herpesvirus (LETV) was used as a model chelonian herpesvirus to test viral infectivity after exposure to seawater. The LETV virus preparations grown in terrapene heart (TH-1) cells were dialyzed for 24 to 120 hr against aerated artificial or natural sea-water or Hanks balanced salt solution (HBBS). Fresh TH-1 cells were inoculated with dialyzed LETV, and on day 10 post-infection cells were scored for cytopathic effect. Virus samples dialyzed up to 120 hr were positive for the herpesvirus DNA polymerase gene by polymerase chain reaction. Electron microscopy revealed intact LETV nucleocapsids after exposure of LETV to artificial seawater or HBSS for 24 hr at 23 C. LETV preparations remained infectious as long as 120 hr in natural and artificial seawater at 23 C. Similar results were obtained with a second culturable chelonian herpesvirus, HV2245. LETV infectivity could not be detected after 48 hr exposure to artificial seawater at 30 C. Since LETV and HV2245 remain infectious for extended periods of time in the marine environment, it is possible that FP-associated and GPD-associated herpesviruses also may be stable. These findings are significant both for researchers studying the epidemiological association of herpesviruses with diseases of marine turtles and for individuals who handle turtles in marine turtle conservation efforts.


Diseases of Aquatic Organisms | 2010

Spirorchiidiasis in stranded loggerhead Caretta caretta and green turtles Chelonia mydas in Florida (USA): host pathology and significance

Brian A. Stacy; Allen M. Foley; Ellis C. Greiner; Lawrence H. Herbst; Alan B. Bolten; Paul A. Klein; Charles A. Manire; Elliott R. Jacobson

Spirorchiid trematodes are implicated as an important cause of stranding and mortality in sea turtles worldwide. However, the impact of these parasites on sea turtle health is poorly understood due to biases in study populations and limited or missing data for some host species and regions, including the southeastern United States. We examined necropsy findings and parasitological data from 89 loggerhead Caretta caretta and 59 green turtles Chelonia mydas that were found dead or moribund (i.e. stranded) in Florida (USA) and evaluated the role of spirorchiidiasis in the cause of death. High prevalence of infection in the stranding population was observed, and most infections were regarded as incidental to the cause of death. Spirorchiidiasis was causal or contributory to death in some cases; however, notable host injury and/or large numbers of parasites were observed in some animals, including nutritionally robust turtles, with no apparent relationship to cause of death. New spirorchiid species records for the region were documented and identified genera included Neospirorchis, Hapalotrema, Carettacola, and Learedius. Parasites inhabited and were associated with injury and inflammation in a variety of anatomic locations, including large arteries, the central nervous system, endocrine organs, and the gastrointestinal tract. These findings provide essential information on the diversity of spirorchiids found in Florida sea turtles, as well as prevalence of infection and the spectrum of associated pathological lesions. Several areas of needed study are identified with regard to potential health implications in the turtle host, and findings caution against over-interpretation in individual cases.


Comparative Biochemistry and Physiology B | 2003

Induction of vitellogenesis by estradiol-17β and development of enzyme-linked immunosorbant assays to quantify plasma vitellogenin levels in green turtles (Chelonia mydas)

Lawrence H. Herbst; Linda Siconolfi-Baez; John H. Torelli; Paul A. Klein; Marci J. Kerben; Isabella M. Schumacher

Treatment of juvenile green turtles (Chelonia mydas) with estradiol-17beta resulted in the induction of a 200 kDa plasma protein, consistent with vitellogenin (Vtg). The N-terminal 15 amino acids of the anion exchange purified protein shared sequence homologies with vitellogenins of several vertebrate species. Rabbit antiserum raised against purified Vtg recognized the plasma protein as well as several yolk proteins. Monoclonal antibody (Mab) HL1248, produced by inoculating mice with turtle yolk granules, showed specificity for plasma Vtg as well as a set of yolk proteins 120, 82, 43 and 32 kDa in size. The N-terminal 22 amino acids of the 43 kDa yolk protein was similar to the lipovitellin I subunit of Vtg of several vertebrate species. The peptide mass map of the 82 kDa yolk protein shared enough ions with that of purified plasma Vtg to support the conclusion that this protein was derived from plasma Vtg. Taken together, these results validate the specificity of Mab HL1248 for Vtg. Using purified Vtg concentration standards, competition and antigen capture enzyme-linked immunosorbant assays (ELISAs) were shown to quantitatively detect Vtg in green turtle plasma. Pre-induced plasma of juvenile turtles had Vtg levels of 2-4 micrograms/ml whereas post-estradiol exposure samples had 38-40 mg/ml. The plasma Vtg concentration of a nesting female turtle was 4.6 mg/ml, approximately 20-fold higher than that of a non-nesting adult female. The antigen capture ELISA will be useful in population studies of this endangered species, to detect vitellogenesis in females that will nest in a given year and to detect inappropriate Vtg levels in turtles exposed to xenoestrogens.

Collaboration


Dive into the Lawrence H. Herbst's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge