Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lawrence H. Lash is active.

Publication


Featured researches published by Lawrence H. Lash.


Critical Reviews in Toxicology | 1988

Biosynthesis and biotransformation of glutathioneS-Conjugates to toxic metabolites

Marion W. Anders; Lawrence H. Lash; Wolfgang Dekant; Adnan A. Elfarra; David R. Dohn; Donald J. Reed

The material presented in this review deals with the hypothesis that the nephrotoxicity of certain halogenated alkanes and alkenes is associated with hepatic biosynthesis of glutathione S-conjugates, which are further metabolized to the corresponding cysteine S-conjugates. Some glutathione or cysteine S-conjugates may be direct-acting nephrotoxins, but most cysteine S-conjugates require bioactivation by renal, pyridoxal phosphate-dependent enzymes, such as cysteine conjugate beta-lyase (beta-lyase). The biosynthesis of glutathione S-conjugates is catalyzed by both the cytosolic and the microsomal glutathione S-transferases, although the latter enzyme is a better catalyst for the reaction of haloalkenes with glutathione. When glutathione S-conjugate formation yields sulfur mustards, as occurs with vicinal-dihaloethanes, the S-conjugates are direct-acting toxins. In contrast, the S-conjugates formed from fluoro- and chloroalkenes yield S-alkyl- or S-vinyl glutathione conjugates, respectively, which are metabolized to the corresponding cysteine S-conjugates by gamma-glutamyltransferase and dipeptidases; inhibition of these enzymes blocks the toxicity of the glutathione S-conjugates. The cysteine S-conjugates must be metabolized by beta-lyase for the expression of toxicity; the beta-lyase inhibitor aminooxyacetic acid blocks the toxicity of cysteine S-conjugates, and the corresponding alpha-methyl cysteine S-conjugates, which cannot be metabolized by beta-lyase, are not toxic. Moreover, probenecid, an inhibitor of renal anion transport system, blocks the toxicity of cysteine S-conjugates, which cannot be metabolized by beta-lyase, are not toxic. Moreover, probenecid, an inhibitor of renal anion transport system, blocks the toxicity of cysteine S-conjugates. Homocysteine S-conjugates are also potent cyto- and nephrotoxins. The high renal content of gamma-glutamyltransferase and the renal anion transport system are probably determinants of kidney tissue as a target site. Biochemical studies indicate that renal mitochondrial dysfunction is produced by the cysteine S-conjugates. Finally, some of the glutathione and cysteine conjugates are mutagenic in the Ames test, and reactive intermediates formed by the action of beta-lyase may contribute to the nephrocarcinogenicity of certain chloroalkenes.


Archives of Biochemistry and Biophysics | 1985

Distribution of oxidized and reduced forms of glutathione and cysteine in rat plasma.

Lawrence H. Lash; Dean P. Jones

The distribution of the glutathionyl moiety between reduced and oxidized forms in rat plasma was markedly different than that for the cysteinyl moiety. Most of the glutathionyl moiety was present as mixed disulfides with cysteine and protein whereas most of the cysteinyl moiety was present as cystine. Seventy percent of total glutathione equivalents was bound to proteins in disulfide linkage. The distribution of glutathione equivalents in the acid-soluble fraction was 28.0% as glutathione, 9.5% as glutathione disulfide, and 62.6% as the mixed disulfide with the cysteinyl moiety. In contrast, 23% of total cysteine equivalents was protein-bound. The distribution of cysteine equivalents in the acid-soluble fraction was 5.9% as cysteine, 83.1% as cystine, and 10.8% as the mixed disulfide with the glutathionyl moiety. A first-order decline in glutathione occurred upon in vitro incubation of plasma and was due to increased formation of mixed disulfides of glutathione with cysteine and protein. This indicates that plasma thiols and disulfides are not at equilibrium, but are in a steady-state maintained in part by transport of these compounds between tissues during the inter-organ phase of their metabolism. The large amounts of protein-bound glutathione and cysteine provide substantial buffering which must be considered in analysis of transient changes in glutathione and cysteine. In addition, this buffering may protect against transient thiol-disulfide redox changes which could affect the structure and activity of plasma and plasma membrane proteins.


Brain Research | 2000

Dopamine toxicity in neuroblastoma cells: role of glutathione depletion by L-BSO and apoptosis

Alan H. Stokes; Denise Y Lewis; Lawrence H. Lash; W. Gray Jerome; Ken Grant; Michael Aschner; Kent E. Vrana

Dopamine (DA), while an essential neurotransmitter, is also a known neurotoxin that potentially plays an etiologic role in several neurodegenerative diseases. DA metabolism and oxidation readily produce reactive oxygen species (ROS) and DA can also be oxidized to a reactive quinone via spontaneous, enzyme-catalyzed or metal-enhanced reactions. A number of these reactions are cytotoxic, yet the precise mechanisms by which DA leads to cell death remain unknown. In this study, the neuroblastoma cell line, SK-N-SH, was utilized to examine DA toxicity under varying oxidant states. Cells pretreated with the glutathione (GSH)-depleting compound, L-buthionine sulfoximine (L-BSO), exhibited enhanced sensitivity to DA compared to controls (non-GSH-depleted cells). Furthermore, in cells pretreated with L-BSO, the addition of ascorbate (250 microM) afforded significant protection against DA-induced toxicity, while pyruvate (500 microM) had no protective effect. To further characterize the possibility that DA is associated with oxidative stress, additional studies were carried out with manganese (30 microM) as a pro-oxidant. Manganese and DA (200 microM), although not cytotoxic when individually administered to SK-N-SH cells, had a synergistic action on cytotoxicity. Finally, morphological and molecular markers of programmed cell death (apoptosis) were observed in cells treated with DA and L-BSO. These markers included membrane blebbing and internucleosomal DNA fragmentation. These results suggest that DA toxicity is tightly linked to intracellular oxidant/antioxidant levels, and that environmental factors, such as excessive Mn exposure, may modulate cellular sensitivity to DA.


Journal of Controlled Release | 2010

Effect of innate glutathione levels on activity of redox-responsive gene delivery vectors

Devika S. Manickam; Jing Li; David A. Putt; Qing Hui Zhou; Chao Wu; Lawrence H. Lash; David Oupický

Redox-responsive polyplexes represent a promising class of non-viral gene delivery vectors. The reducible disulfide bonds in the polyplexes undergo intracellular reduction owing to the presence of high concentrations of reduced glutathione (GSH). Available evidence suggests improved transfection activity of redox-sensitive polyplexes upon artificial modulation of intracellular GSH. This study investigates the effect of innate differences in GSH concentration in a panel of human pancreatic cancer cell lines on activity of reducible polyplexes of the four major classes of nucleic acid therapeutics: plasmid DNA (pDNA), messenger RNA (mRNA), antisense oligodeoxynucleotides (AON) and siRNA. In general, reducible polyplexes of linear poly(amido amines) (PAA) show improved activity compared to non-reducible polyplexes of PAA. Results demonstrate that increased GSH levels are associated with improved transfection of mRNA polyplexes but no clear trend is observed for pDNA, AON and siRNA polyplexes.


Biochemical and Biophysical Research Communications | 1983

Transport of glutathione by renal basal-lateral membrane vesicles

Lawrence H. Lash; Dean P. Jones

Transport of glutathione was studied in membrane vesicles derived from the basal-lateral region of the plasma membrane of rat kidney proximal tubules. The integrity of the vesicle preparation was demonstrated by showing that vesicles were osmotically sensitive, with GSH uptake at equilibrium varying inversely with medium osmolality. Analysis of vesicle content by high-pressure liquid chromatography and competition experiments with glycine and cysteinylglycine confirmed that measured uptake of GSH represented transport of intact tripeptide rather than transport of degradation products. The initial rate of GSH uptake in the presence of either the sodium or potassium salt of the permeant thiocyanate anion showed that the uptake was sodium-dependent. This suggests that a GSH-Na+ cotransport system exists in these membranes.


Analytical Biochemistry | 1989

Isolation of two distinct populations of cells from fat kidney cortex and their use in the study of chemical-induced toxicity

Lawrence H. Lash; Jeffrey J. Tokarz

Procedures for the isolation and enrichment of cell populations from suspensions of rat kidney cortical cells were developed. Using Percoll density-gradient centrifugation, two populations of cells were obtained; marker enzymes [alkaline phosphatase and gamma-glutamyltransferase for proximal tubular (PT) cells and hexokinase for distal tubular (DT) cells] and functional responses (stimulation of PT cell oxygen consumption by succinate and inhibition of DT cell oxygen consumption by amiloride) were then employed to identify and assess the purity of the two fractions. The PT cell fraction was estimated to contain 97% PT cells and the DT cell fraction was estimated to contain 88% DT cells. Staining with toluidine blue and light microscopy showed that PT cells contained a brush border, were larger than DT cells, and had more intensely staining nuclei than DT cells. To demonstrate the usefulness of these cell preparations in the study of biochemical mechanisms of renal cell injury, time- and concentration-dependent effects of the PT cell-specific nephrotoxin cephaloridine (CPH) on PT and DT cell trypan blue exclusion were examined. CPH was toxic in PT cells but not in DT cells; viability of PT cells incubated with 0.1 or 1 mM CPH for 2 h was 57 or 34%, respectively, compared to 81% for control cells; viability of DT cells incubated with 0.1 or 1 mM CPH for 2 h was 74 or 71%, respectively, compared to 74% for control cells. This method thus provides highly enriched preparations of freshly isolated PT and DT cells that retain their unique properties and are suitable for studies of biochemical mechanisms of chemical toxicity and nephron heterogeneity.


Brain Research | 1994

Intracellular glutathione (GSH) levels modulate mercuric chloride (MC)- and methylmercuric chloride (MeHgCl)-induced amino acid release from neonatal rat primary astrocytes cultures

Michael Aschner; K.J. Mullaney; D.E. Wagoner; Lawrence H. Lash; H.K. Kimelberg

Mercuric chloride (MC) and methylmercury (MeHg) were found to increase amino acid release from astrocytes. This suggests interaction with sulfhydryl (-SH) groups which are controlled by glutathione [GSH] levels. In the present study, we evaluated the effects of alterations in intracellular glutathione concentrations [GSH]i on the outcome of MC and MeHg treatment. [GSH]i were increased in a time-dependent fashion by incubating the astrocytes with 1 mM L-2-oxothiazolidine-4-carboxylic acid (OTC), a cysteine precursor. OTC attenuated the release of [2,3-3H]D-aspartic acid from astrocytes exposed to MC- (5 microM) and MeHg-(10 microM). MeHg-induced [3H]D-taurine release was also reduced by pretreatment of astrocytes with OTC. Treatment with BSO (50 microM) decreased [GSH]i in astrocytes, and increased [2,3-3H]D-aspartate release from MC- and MeHg-treated astrocytes, and [3H]D-taurine release from MeHg-treated cells. Neither OTC nor BSO when added to cultures in the absence of MC or MeHg had an effect on amino acid release by astrocytes. The current study underscores both the sensitivity of astrocytes to mercurials in terms of amino acid release and the relationship of these effects of astrocytic [GSH]i.


Archives of Biochemistry and Biophysics | 1991

Uptake of glutathione by renal cortical mitochondria.

Timothy B. McKernan; Edythe B. Woods; Lawrence H. Lash

Transport of GSH into renal cortical mitochondria was studied. Mitochondria were highly enriched with little contamination from other subcellular organelles (as assessed by marker enzymes), they exhibited coupled respiration (respiratory control ratio greater than 3.0), and they had initial GSH concentrations of 5.71 +/- 0.65 nmol/mg protein (n = 47). Incubation of mitochondria with GSH in a triethanolamine, pH 7.4, buffer containing sucrose, potassium phosphate, MgCl2, and KCl, produced time- and concentration-dependent increases in intramitochondrial GSH content. Uptake was linear versus time for at least 2 min and exhibited kinetics consistent with one low-affinity, high-capacity process (Km = 1.3 mM, Vmax = 5.59 nmol/min per mg protein), although the results cannot exclude the presence of other, less quantitatively significant pathways. The initial rate of uptake of 5 mM GSH was not significantly altered by uncouplers (0.1 mM 2,4-dinitrophenol and 25 microM carbonyl cyanide m-chlorophenylhydrazone) or by 1 mM ADP. In contrast, incubation with 1 mM ATP, 1 mM KCN, 0.1 mM or 1 mM CaCl2 inhibited uptake by 41, 39, 43, or 55%, respectively. GSH uptake was markedly inhibited by gamma-glutamylglutamate and by a series of S-alkyl GSH derivatives. Strong interactions (i.e., both cis and trans effects) were observed with other dicarboxylates (i.e., succinate, malate, glutamate) but not with monocarboxylates (i.e., lactate, pyruvate). Preincubation of mitochondria with GSH protected against tert-butyl hydroperoxide- or methyl vinyl ketone-induced inhibition of state 3 respiration. These results demonstrate uptake of GSH into renal cortical mitochondria that appears to involve electroneutral countertransport (exchange) with other dicarboxylates. Functionally, GSH uptake into mitochondria can protect these organelles from various forms of injury, such as oxidative stress.


Neurotoxicology | 2008

Duration of airborne-manganese exposure in rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity

Keith M. Erikson; David C. Dorman; Lawrence H. Lash; Michael Aschner

Juvenile (20-24-month-old) rhesus monkeys were exposed to airborne-manganese sulfate (MnSO(4)) 1.5 mg Mn/m(3) (6h/day, 5 days/week) for 15 or 33 days, or for 65 days followed by a 45 or 90 days post-exposure recovery period, or air. We assessed biochemical endpoints indicative of oxidative stress and excitotoxicity in the cerebellum, frontal cortex, caudate, globus pallidus, olfactory cortex, and putamen. Glutamine synthetase (GS), glutamate transporters (GLT-1 and GLAST) and tyrosine hydroxylase (TH) protein levels, metallothionein (MT), GLT-1, GLAST, TH and GS mRNA levels, and total glutathione (GSH) levels were determined for all brain regions. Exposure to Mn significantly decreased MT mRNA in the caudate (vs. air-exposed controls). This depression persisted at least 90 days post-exposure. In contrast, putamen MT mRNA levels were unaffected by Mn exposure. GLT-1 and GLAST were relatively unaffected by short term Mn exposure, except in the globus pallidus where exposure for 33 days led to decreased protein levels, which persisted after 45 days of recovery for both proteins and 90 days of recovery in the case of GLAST. Exposure to 1.5 mg Mn/m(3) caused a significant decrease in GSH levels in the caudate and increased GSH levels in the putamen of monkey exposed for 15 and 33 days with both effects persisting at least 90 days post-exposure. Finally, TH protein levels were significantly lowered in the globus pallidus of the monkeys exposed for 33 days but mRNA levels were significantly increased in this same region. Overall, the nonhuman primate brain responds to airborne Mn in a heterogeneous manner and most alterations in these biomarkers of neurotoxicity are reversible upon cessation of Mn exposure.


Journal of Toxicology and Environmental Health | 1999

Identification of S-(1,2-dichlorovinyl)glutathione in the blood of human volunteers exposed to trichloroethylene

Lawrence H. Lash; David A. Putt; Wayne T. Brashear; Richat Abbas; Jean C. Parker; Jeffrey W. Fisher

Healthy male and female human volunteers were exposed to 50 ppm or 100 ppm trichloroethylene (Tri) by inhalation for 4 h. Blood and urine samples were taken at various times before, during, and after the exposure period for analysis of glutathione (GSH), related thiols and disulfides, and GSH-derived metabolites of Tri. The GSH conjugate of Tri, S-(1,2-dichlorovinyl)glutathione (DCVG), was found in the blood of all subjects from 30 min after the start of the 4-h exposure to Tri to 1 to 8 h after the end of the exposure period, depending on the dose of Tri and the sex of the subject. Male subjects exposed to 100 ppm Tri exhibited a maximal content of DCVG in the blood at 2 h after the start of the exposure of 46.1 +/- 14.2 nmol/ml (n = 8), whereas female subjects exposed to 100 ppm Tri exhibited a maximal content of DCVG in the blood at 4 h after the start of the exposure of only 13.4 /- 6.6 nmol/ml (n = 8). Pharmacokinetic analysis of blood DCVG concentrations showed that the area under the curve value was 3.4-fold greater in males than in females, while the t1/2 values for systemic clearance of DCVG were similar in the two sexes. Analysis of the distribution of individual values indicated a possible sorting, irrespective of gender, into a high- and a low-activity population, which suggests the possibility of a polymorphism. The mercapturates N-acetyl-1,2-DCVC and N-acetyl-2,2-DCVC were only observed in the urine of 1 male subject exposed to 100 ppm Tri. Higher contents of glutamate were generally found in the blood of females, but no marked differences between sexes were observed in contents of cyst(e)ine or GSH or in GSH redox status in the blood. Urinary GSH output exhibited a diurnal variation with no apparent sex- or Tri exposure-dependent differences. These results provide direct, in vivo evidence of GSH conjugation of Tri in humans exposed to Tri and demonstrate markedly higher amounts of DCVG formation in males, suggesting that their potential risk to Tri-induced renal toxicity may be greater than that of females.

Collaboration


Dive into the Lawrence H. Lash's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean C. Parker

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

M. W. Anders

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Aschner

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge