Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lawrence I. Rothblum is active.

Publication


Featured researches published by Lawrence I. Rothblum.


Molecular and Cellular Biology | 2003

mTOR-Dependent Regulation of Ribosomal Gene Transcription Requires S6K1 and Is Mediated by Phosphorylation of the Carboxy-Terminal Activation Domain of the Nucleolar Transcription Factor UBF†

Katherine M. Hannan; Yves Brandenburger; Anna Jenkins; Kerith Sharkey; Alice H. Cavanaugh; Lawrence I. Rothblum; Tom Moss; Gretchen Poortinga; Grant A. McArthur; Richard B. Pearson; Ross D. Hannan

ABSTRACT Mammalian target of rapamycin (mTOR) is a key regulator of cell growth acting via two independent targets, ribosomal protein S6 kinase 1 (S6K1) and 4EBP1. While each is known to regulate translational efficiency, the mechanism by which they control cell growth remains unclear. In addition to increased initiation of translation, the accelerated synthesis and accumulation of ribosomes are fundamental for efficient cell growth and proliferation. Using the mTOR inhibitor rapamycin, we show that mTOR is required for the rapid and sustained serum-induced activation of 45S ribosomal gene transcription (rDNA transcription), a major rate-limiting step in ribosome biogenesis and cellular growth. Expression of a constitutively active, rapamycin-insensitive mutant of S6K1 stimulated rDNA transcription in the absence of serum and rescued rapamycin repression of rDNA transcription. Moreover, overexpression of a dominant-negative S6K1 mutant repressed transcription in exponentially growing NIH 3T3 cells. Rapamycin treatment led to a rapid dephosphorylation of the carboxy-terminal activation domain of the rDNA transcription factor, UBF, which significantly reduced its ability to associate with the basal rDNA transcription factor SL-1. Rapamycin-mediated repression of rDNA transcription was rescued by purified recombinant phosphorylated UBF and endogenous UBF from exponentially growing NIH 3T3 cells but not by hypophosphorylated UBF from cells treated with rapamycin or dephosphorylated recombinant UBF. Thus, mTOR plays a critical role in the regulation of ribosome biogenesis via a mechanism that requires S6K1 activation and phosphorylation of UBF.


Journal of Cell Biology | 2008

UBF levels determine the number of active ribosomal RNA genes in mammals

Elaine Sanij; Gretchen Poortinga; Kerith Sharkey; Sandy S. C. Hung; Timothy P. Holloway; Jaclyn Quin; Elysia Robb; Lee H. Wong; Walter G. Thomas; Victor Y. Stefanovsky; Tom Moss; Lawrence I. Rothblum; Katherine M. Hannan; Grant A. McArthur; Richard B. Pearson; Ross D. Hannan

In mammals, the mechanisms regulating the number of active copies of the ∼200 ribosomal RNA (rRNA) genes transcribed by RNA polymerase I are unclear. We demonstrate that depletion of the transcription factor upstream binding factor (UBF) leads to the stable and reversible methylation-independent silencing of rRNA genes by promoting histone H1–induced assembly of transcriptionally inactive chromatin. Chromatin remodeling is abrogated by the mutation of an extracellular signal-regulated kinase site within the high mobility group box 1 domain of UBF1, which is required for its ability to bend and loop DNA in vitro. Surprisingly, rRNA gene silencing does not reduce net rRNA synthesis as transcription from remaining active genes is increased. We also show that the active rRNA gene pool is not static but decreases during differentiation, correlating with diminished UBF expression. Thus, UBF1 levels regulate active rRNA gene chromatin during growth and differentiation.


Oncogene | 2000

Rb and p130 regulate RNA polymerase I transcription: Rb disrupts the interaction between UBF and SL-1.

K. M. Hannan; Ross D. Hannan; S. D. Smith; Leonard S. Jefferson; Mingyue Lun; Lawrence I. Rothblum

We have previously demonstrated that the protein encoded by the retinoblastoma susceptibility gene (Rb) functions as a regulator of transcription by RNA polymerase I (rDNA transcription) by inhibiting UBF-mediated transcription. In the present study, we have examined the mechanism by which Rb represses UBF-dependent rDNA transcription and determined if other Rb-like proteins have similar effects. We demonstrate that authentic or recombinant UBF and Rb interact directly and this requires a functional A/B pocket. DNase footprinting and band-shift assays demonstrated that the interaction between Rb and UBF does not inhibit the binding of UBF to DNA. However, the formation of an UBF/Rb complex does block the interaction of UBF with SL-1, as indicated by using the 48 kDa subunit as a marker for SL-1. Additional evidence is presented that another pocket protein, p130 but not p107, can be found in a complex with UBF. Interestingly, the cellular content of p130 inversely correlated with the rate of rDNA transcription in two physiological systems, and overexpression of p130 inhibited rDNA transcription. These results suggest that p130 may regulate rDNA transcription in a similar manner to Rb.


Frontiers in Bioscience | 1998

Transcription by RNA polymerase I.

Hannan Km; Ross D. Hannan; Lawrence I. Rothblum

The genes that code for 45S rRNA, the precursor of 18S, 5.8S and 28S rRNA, are transcribed by RNA polymerase I. In many eukaryotes the genes are arranged as tandem repeats in discrete chromosomal clusters. rDNA transcription and rRNA processing occur in the nucleolus. In vertebrates, at least two factors, SL-1 and UBF, specific for transcription by RNA polymerase I cooperate in the formation of the initiation complex. Interestingly, there are proteins analogous to SL-1 in unicellular eukaryotes, but the requirement for a UBF-like factor appears to vary. Recent advances in our understanding of the rDNA transcription system and its regulation have demonstrated overlap with the other nuclear transcription systems (RNA polymerase II and III). This is exemplified by the utilization of TBP as a component of SL-1 and the role of Rb in regulatory rDNA transcription.


Journal of Biological Chemistry | 2006

Phospholemman Inhibition of the Cardiac Na+/Ca2+ Exchanger ROLE OF PHOSPHORYLATION

Xue Qian Zhang; Belinda A. Ahlers; Amy L. Tucker; Jian Iiang Song; JuFang Wang; J. Randall Moorman; J. Paul Mounsey; Lois L. Carl; Lawrence I. Rothblum; Joseph Y. Cheung

We have demonstrated previously that phospholemman (PLM), a 15-kDa integral sarcolemmal phosphoprotein, inhibits the cardiac Na+/Ca2+ exchanger (NCX1). In addition, protein kinase A phosphorylates serine 68, whereas protein kinase C phosphorylates both serine 63 and serine 68 of PLM. Using human embryonic kidney 293 cells that are devoid of both endogenous PLM and NCX1, we first demonstrated that the exogenous NCX1 current (INaCa) was increased by phorbol 12-myristate 13-acetate (PMA) but not by forskolin. When co-expressed with NCX1, PLM resulted in: (i) decreases in INaCa, (ii) attenuation of the increase in INaCa by PMA, and (iii) additional reduction in INaCa in cells treated with forskolin. Mutating serine 63 to alanine (S63A) preserved the sensitivity of PLM to forskolin in terms of suppression of INaCa, whereas mutating serine 68 to alanine (S68A) abolished the inhibitory effect of PLM on INaCa. Mutating serine 68 to glutamic acid (phosphomimetic) resulted in additional suppression of INaCa as compared with wild-type PLM. These results suggest that PLM phosphorylated at serine 68 inhibited INaCa. The physiological significance of inhibition of NCX1 by phosphorylated PLM was evaluated in PLM-knock-out (KO) mice. When compared with wild-type myocytes, INaCa was significant larger in PLM-KO myocytes. In addition, the PMA-induced increase in INaCa was significantly higher in PLM-KO myocytes. By contrast, forskolin had no effect on INaCa in wild-type myocytes. We conclude that PLM, when phosphorylated at serine 68, inhibits Na+/Ca2+ exchange in the heart.


Oncogene | 2000

RNA polymerase I transcription in confluent cells: Rb downregulates rDNA transcription during confluence-induced cell cycle arrest

Katherine M. Hannan; Brian K. Kennedy; Alice H. Cavanaugh; Ross D. Hannan; Iwona Hirschler-Laszkiewicz; Leonard S. Jefferson; Lawrence I. Rothblum

When 3T6 cells are confluent, they withdraw from the cell cycle. Concomitant with cell cycle arrest a significant reduction in RNA polymerase I transcription (80% decrease at 100% confluence) is observed. In the present study, we examined mechanism(s) through which transcription of the ribosomal genes is coupled to cell cycle arrest induced by cell density. Interestingly with an increase in cell density (from 3–43% confluence), a significant accumulation in the cellular content of hyperphosphorylated Rb was observed. As cell density increased further, the hypophosphorylated form of Rb became predominant and accumulated in the nucleoli. Co-immunoprecipitation experiments demonstrated there was also a significant rise in the amount of hypophosphorylated Rb associated with the rDNA transcription factor UBF. This increased interaction between Rb and UBF correlated with the reduced rate of rDNA transcription. Furthermore, overexpression of recombinant Rb inhibited UBF-dependent activation of transcription from a cotransfected rDNA reporter in either confluent or exponential cells. The amounts or activities of the rDNA transcription components we examined did not significantly change with cell cycle arrest. Although the content of PAF53, a polymerase associated factor, was altered marginally (decreased 38%), the time course and magnitude of the decrease did not correlate with the reduced rate of rDNA transcription. The results presented support a model wherein regulation of the binding of UBF to Rb and, perhaps the cellular content of PAF53, are components of the mechanism through which cell cycle and rDNA transcription are linked.


Molecular and Cellular Biology | 2009

Phosphorylation of Eukaryotic Translation Initiation Factor 2α Coordinates rRNA Transcription and Translation Inhibition during Endoplasmic Reticulum Stress

Jenny B. DuRose; Donalyn Scheuner; Randal J. Kaufman; Lawrence I. Rothblum; Maho Niwa

ABSTRACT The endoplasmic reticulum (ER) is the major cellular compartment where folding and maturation of secretory and membrane proteins take place. When protein folding needs exceed the capacity of the ER, the unfolded protein response (UPR) pathway modulates gene expression and downregulates protein translation to restore homeostasis. Here, we report that the UPR downregulates the synthesis of rRNA by inactivation of the RNA polymerase I basal transcription factor RRN3/TIF-IA. Inhibition of rRNA synthesis does not appear to involve the well-characterized mTOR (mammalian target of rapamycin) pathway; instead, PERK-dependent phosphorylation of eIF2α plays a critical role in the inactivation of RRN3/TIF-IA. Downregulation of rRNA transcription occurs simultaneously or slightly prior to eIF2α phosphorylation-induced translation repression. Since rRNA is the most abundant RNA species, constituting ∼90% of total cellular RNA, its downregulation exerts a significant impact on cell physiology. Our study demonstrates the first link between regulation of translation and rRNA synthesis with phosphorylation of eIF2α, suggesting that this pathway may be broadly utilized by stresses that activate eIF2α kinases in order to coordinately regulate translation and ribosome biogenesis during cellular stress.


Journal of Biological Chemistry | 1998

Affinity purification of mammalian RNA polymerase I. Identification of an associated kinase.

Ross D. Hannan; William M. Hempel; Alice H. Cavanaugh; Toru Arino; Stefan I. Dimitrov; Tom Moss; Lawrence I. Rothblum

Overlapping cDNA clones encoding the two largest subunits of rat RNA polymerase I, designated A194 and A127, were isolated from a Reuber hepatoma cDNA library. Analyses of the deduced amino acid sequences revealed that A194 and A127 are the homologues of yeast A190 and A135 and have homology to the β′ and β subunits of Escherichia coli RNA polymerase I. Antibodies raised against the recombinant A194 and A127 proteins recognized single proteins of approximately 190 and 120 kDa on Western blots of total cellular proteins of mammalian origin. N1S1 cell lines expressing recombinant His-tagged A194 and FLAG-tagged A127 proteins were isolated. These proteins were incorporated into functional RNA polymerase I complexes, and active enzyme, containing FLAG-tagged A127, could be immunopurified to approximately 80% homogeneity in a single chromatographic step over an anti-FLAG affinity column. Immunoprecipitation of A194 from 32P metabolically labeled cells with anti-A194 antiserum demonstrated that this subunit is a phosphoprotein. Incubation of the FLAG affinity-purified RNA polymerase I complex with [γ-32P]ATP resulted in autophosphorylation of the A194 subunit of RPI, indicating the presence of associated kinase(s). One of these kinases was demonstrated to be CK2, a serine/threonine protein kinase implicated in the regulation of cell growth and proliferation.


Journal of Biological Chemistry | 1996

Regulation of Ribosomal DNA Transcription during Contraction-induced Hypertrophy of Neonatal Cardiomyocytes

Ross D. Hannan; Joachim Luyken; Lawrence I. Rothblum

Cardiac hypertrophy requires protein accumulation. This results largely from an increased capacity for protein synthesis, which in turn is the result of an elevated rate of ribosome biogenesis. The process of ribosome formation is regulated at the level of transcription of the ribosomal RNA genes. In this study, we examined the amounts and activities of various components of the ribosomal DNA transcription apparatus in contraction-arrested neonatal cardiomyocytes and in spontaneously contracting cardiomyocytes that hypertrophy. Nuclear run-on assays demonstrated that spontaneously contracting cardiomyocytes supported a 2-fold increased rate of ribosomal DNA transcription. However, enzymatic assay of total solubilized RNA polymerase I and Western blots demonstrated that contraction-induced increases in ribosomal RNA synthesis were not accompanied by increased activity or amounts of RNA polymerase I. In contrast, accelerated ribosome biogenesis was accompanied by an increased amount of the ribosomal DNA transcription factor, UBF. Immunoprecipitation of [P]orthophosphate-labeled UBF from hypertrophying, neonatal cardiomyocytes indicated that the accumulated UBF protein was phosphorylated and, thus, in the active form. UBF mRNA levels began to increase within 3-6 h of the initiation of contraction and preceded the elevation in rDNA transcription. Nuclear run-on assays demonstrated increased rates of transcription of the UBF gene. Transfection of chimeric reporter constructs containing deletions of the 5′-flanking region of the UBF gene revealed the presence of contraction response elements between −1189 and −665 relative to the putative start of transcription. These results are consistent with the hypothesis that UBF is an important factor in the regulation of rDNA transcription during contraction-mediated neonatal cardiomyocyte hypertrophy.


Journal of Biological Chemistry | 1997

cDNA Cloning, Genomic Organization, and in Vivo Expression of Rat N-syndecan

David J. Carey; Kimberly J. Conner; Vinod K. Asundi; Daniel J. O'Mahony; Richard C. Stahl; LoriJo Showalter; Gunay Cizmeci-Smith; James Hartman; Lawrence I. Rothblum

The amino acid sequence of rat N-syndecan core protein was deduced from the cloned cDNA sequence. The sequence predicts a core protein of 442 amino acids with six structural domains: an NH2-terminal signal peptide, a membrane distal glycosaminoglycan attachment domain, a mucin homology domain, a membrane proximal glycosaminoglycan attachment domain, a single transmembrane domain, and a noncatalytic COOH-terminal cytoplasmic domain. Transfection of human 293 cells resulted in the expression of N-syndecan that was modified by heparan sulfate chain addition. Heparitinase digestion of the expressed proteoglycan produced a core protein that migrated on SDS-polyacrylamide gels at an apparent molecular weight of 120,000, identical to N-syndecan synthesized by neonatal rat brain or Schwann cells. Rat genomic DNA coding for N-syndecan was isolated by hybridization screening. The rat N-syndecan gene is comprised of five exons. Each exon corresponds to a specific core protein structural domain, with the exception of the fifth exon, which contains the coding information for both the transmembrane and cytoplasmic domains as well as the 3′-untranslated region of the mRNA. The first intron is large, with a length of 22 kilobases. The expression of N-syndecan was investigated in late embryonic, neonatal, and adult rats by immunoblotting and Northern blotting analysis. Among the tissues and developmental stages studied, high levels of N-syndecan expression were restricted to the early postnatal nervous system. N-syndecan was expressed in all regions of the nervous system, including cortex, midbrain, spinal cord, and peripheral nerve. Immunohistochemical staining revealed high levels of N-syndecan expression in all brain regions and fiber tract areas.

Collaboration


Dive into the Lawrence I. Rothblum's collaboration.

Top Co-Authors

Avatar

Ross D. Hannan

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xue Qian Zhang

Geisinger Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianliang Song

Geisinger Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lois L. Carl

Geisinger Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tom Moss

Université du Québec

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge