Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lawrence J. Tauzin is active.

Publication


Featured researches published by Lawrence J. Tauzin.


ACS Nano | 2016

Adsorption and Unfolding of a Single Protein Triggers Nanoparticle Aggregation

Sergio Dominguez-Medina; Lydia Kisley; Lawrence J. Tauzin; Anneli Hoggard; Bo Shuang; A. Swarnapali De Silva Indrasekara; Sishan Chen; Lin-Yung Wang; Paul J. Derry; Anton Liopo; Eugene R. Zubarev; Christy F. Landes; Stephan Link

The response of living systems to nanoparticles is thought to depend on the protein corona, which forms shortly after exposure to physiological fluids and which is linked to a wide array of pathophysiologies. A mechanistic understanding of the dynamic interaction between proteins and nanoparticles and thus the biological fate of nanoparticles and associated proteins is, however, often missing mainly due to the inadequacies in current ensemble experimental approaches. Through the application of a variety of single molecule and single particle spectroscopic techniques in combination with ensemble level characterization tools, we identified different interaction pathways between gold nanorods and bovine serum albumin depending on the protein concentration. Overall, we found that local changes in protein concentration influence everything from cancer cell uptake to nanoparticle stability and even protein secondary structure. We envision that our findings and methods will lead to strategies to control the associated pathophysiology of nanoparticle exposure in vivo.


Chemical Reviews | 2017

Single Particle Tracking: From Theory to Biophysical Applications

Hao Shen; Lawrence J. Tauzin; Rashad Baiyasi; Wenxiao Wang; Nicholas A. Moringo; Bo Shuang; Christy F. Landes

After three decades of developments, single particle tracking (SPT) has become a powerful tool to interrogate dynamics in a range of materials including live cells and novel catalytic supports because of its ability to reveal dynamics in the structure-function relationships underlying the heterogeneous nature of such systems. In this review, we summarize the algorithms behind, and practical applications of, SPT. We first cover the theoretical background including particle identification, localization, and trajectory reconstruction. General instrumentation and recent developments to achieve two- and three-dimensional subdiffraction localization and SPT are discussed. We then highlight some applications of SPT to study various biological and synthetic materials systems. Finally, we provide our perspective regarding several directions for future advancements in the theory and application of SPT.


Langmuir | 2014

Charge-Dependent Transport Switching of Single Molecular Ions in a Weak Polyelectrolyte Multilayer

Lawrence J. Tauzin; Bo Shuang; Lydia Kisley; Andrea P. Mansur; Jixin Chen; Al de Leon; Rigoberto C. Advincula; Christy F. Landes

The tunable nature of weak polyelectrolyte multilayers makes them ideal candidates for drug loading and delivery, water filtration, and separations, yet the lateral transport of charged molecules in these systems remains largely unexplored at the single molecule level. We report the direct measurement of the charge-dependent, pH-tunable, multimodal interaction of single charged molecules with a weak polyelectrolyte multilayer thin film, a 10 bilayer film of poly(acrylic acid) and poly(allylamine hydrochloride) PAA/PAH. Using fluorescence microscopy and single-molecule tracking, two modes of interaction were detected: (1) adsorption, characterized by the molecule remaining immobilized in a subresolution region and (2) diffusion trajectories characteristic of hopping (D ∼ 10–9 cm2/s). Radius of gyration evolution analysis and comparison with simulated trajectories confirmed the coexistence of the two transport modes in the same single molecule trajectories. A mechanistic explanation for the probe and condition mediated dynamics is proposed based on a combination of electrostatics and a reversible, pH-induced alteration of the nanoscopic structure of the film. Our results are in good agreement with ensemble studies conducted on similar films, confirm a previously-unobserved hopping mechanism for charged molecules in polyelectrolyte multilayers, and demonstrate that single molecule spectroscopy can offer mechanistic insight into the role of electrostatics and nanoscale tunability of transport in weak polyelectrolyte multilayers.


Journal of Physical Chemistry B | 2013

On the pH-responsive, charge-selective, polymer-brush-mediated transport probed by traditional and scanning fluorescence correlation spectroscopy.

C. R. Daniels; Lawrence J. Tauzin; E. Foster; Rigoberto C. Advincula; Christy F. Landes

The complete and reversible charge-selective sequestration of fluorophores by a weak polyelectrolyte brush, poly(2-(dimethylamino)ethylmethacrylate) (PDMAEMA) was demonstrated using fluorescence correlation spectroscopy (FCS). The chemistry and thickness of the weak polyelectrolyte PDMAEMA was tuned reversibly between neutral and cationic polymer forms. Thus, by switching the pH successively, the brush architecture was tuned to selectively trap and release anionic dye probes while continuously excluding cationic molecules. In addition, line-scan FCS was implemented and applied for the first time to a synthetic polymer system and used to identify a new, slower diffusion time on the order of seconds for the sequestered anionic probe under acidic conditions. These results, which quantify the selective sequestration properties of the PDMAEMA brush, are important because they enable a better understanding of transport in polymers and establish a spectroscopic means of evaluating materials with proposed applications in separations science, charge storage/release, and environmental remediation.


ChemBioChem | 2013

Photobleaching Lifetimes of Cyanine Fluorophores Used for Single-Molecule Förster Resonance Energy Transfer in the Presence of Various Photoprotection Systems

David Cooper; Heui Uhm; Lawrence J. Tauzin; Nitesh K. Poddar; Christy F. Landes

Lengthening smFRET lifetimes: We investigated various photoprotection system combinations to find the combination that optimally extended the photobleach lifetime of a Cy3/Cy5 smFRET pair attached to a DNA hairpin in a single-molecule environment. We found that the glucose/glucose oxygen-scavenging solution in combination with redox-based photostabilization solutions yielded the longest average photobleaching lifetimes.


Scientific Reports | 2016

Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions

Bo Shuang; Wenxiao Wang; Hao Shen; Lawrence J. Tauzin; Charlotte Flatebo; Jianbo Chen; Nicholas A. Moringo; Logan D. C. Bishop; Kevin F. Kelly; Christy F. Landes

Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions.


Journal of Physical Chemistry B | 2014

Single-Molecule FRET Studies of HIV TAR−DNA Hairpin Unfolding Dynamics

Jixin Chen; Nitesh K. Poddar; Lawrence J. Tauzin; David L. Cooper; Anatoly B. Kolomeisky; Christy F. Landes

We directly measure the dynamics of the HIV trans-activation response (TAR)–DNA hairpin with multiple loops using single-molecule Förster resonance energy transfer (smFRET) methods. Multiple FRET states are identified that correspond to intermediate melting states of the hairpin. The stability of each intermediate state is calculated from the smFRET data. The results indicate that hairpin unfolding obeys a “fraying and peeling” mechanism, and evidence for the collapse of the ends of the hairpin during folding is observed. These results suggest a possible biological function for hairpin loops serving as additional fraying centers to increase unfolding rates in otherwise stable systems. The experimental and analytical approaches developed in this article provide useful tools for studying the mechanism of multistate DNA hairpin dynamics and of other general systems with multiple parallel pathways of chemical reactions.


RSC Advances | 2016

Variable surface transport modalities on functionalized nylon films revealed with single molecule spectroscopy

Lawrence J. Tauzin; Hao Shen; Nicholas A. Moringo; Margaret H. Roddy; Cathy A. Bothof; George W. Griesgraber; Amy K. McNulty; Jerald K. Rasmussen; Christy F. Landes

Functionalization of polymer films with ion exchange ligands is a common method for creating surfaces optimized for separations and purification. Surfaces are typically evaluated for their ability to retain target molecules, but this retention encompasses a variety of physical and chemical processes. In this work we use single molecule fluorescence microscopy to investigate two ion exchange ligands that enhance surface binding of their respective target proteins. Single molecule tracking reveals that in addition to increasing the rate of surface interaction, functionalization can also increase the surface mobility of the target molecules resulting in large areas of the membrane being explored during adsorption, likely due to hopping of the protein molecules to adjacent binding sites. Hopping was only observed for one of the ligands and not the other. The enhanced mobility was found to be proportional to the UV exposure time during ligand grafting, which suggests that the hopping scales with the grafted polymer chain length.


Nano Letters | 2018

Polycrystallinity of Lithographically Fabricated Plasmonic Nanostructures Dominates Their Acoustic Vibrational Damping

Chongyue Yi; Man-Nung Su; Pratiksha D. Dongare; Debadi Chakraborty; Yi-Yu Cai; David M. Marolf; Rachael N. Kress; Behnaz Ostovar; Lawrence J. Tauzin; Fangfang Wen; Wei-Shun Chang; Matthew R. Jones; John E. Sader; Naomi J. Halas; Stephan Link

The study of acoustic vibrations in nanoparticles provides unique and unparalleled insight into their mechanical properties. Electron-beam lithography of nanostructures allows precise manipulation of their acoustic vibration frequencies through control of nanoscale morphology. However, the dissipation of acoustic vibrations in this important class of nanostructures has not yet been examined. Here we report, using single-particle ultrafast transient extinction spectroscopy, the intrinsic damping dynamics in lithographically fabricated plasmonic nanostructures. We find that in stark contrast to chemically synthesized, monocrystalline nanoparticles, acoustic energy dissipation in lithographically fabricated nanostructures is solely dominated by intrinsic damping. A quality factor of Q = 11.3 ± 2.5 is observed for all 147 nanostructures, regardless of size, geometry, frequency, surface adhesion, and mode. This result indicates that the complex Youngs modulus of this material is independent of frequency with its imaginary component being approximately 11 times smaller than its real part. Substrate-mediated acoustic vibration damping is strongly suppressed, despite strong binding between the glass substrate and Au nanostructures. We anticipate that these results, characterizing the optomechanical properties of lithographically fabricated metal nanostructures, will help inform their design for applications such as photoacoustic imaging agents, high-frequency resonators, and ultrafast optical switches.


ACS Nano | 2018

Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers

Yi-Yu Cai; Jun G. Liu; Lawrence J. Tauzin; Da Huang; Eric Sung; Hui Zhang; Anneli Joplin; Wei-Shun Chang; Peter Nordlander; Stephan Link

We demonstrate, experimentally and theoretically, that the photon emission from gold nanorods can be viewed as a Purcell effect enhanced radiative recombination of hot carriers. By correlating the single-particle photoluminescence spectra and quantum yields of gold nanorods measured for five different excitation wavelengths and varied excitation powers, we illustrate the effects of hot carrier distributions evolving through interband and intraband transitions and the photonic density of states on the nanorod photoluminescence. Our model, using only one fixed input parameter, describes quantitatively both emission from interband recombination and the main photoluminescence peak coinciding with the longitudinal surface plasmon resonance.

Collaboration


Dive into the Lawrence J. Tauzin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge