Lawrence J. Winship
Hampshire College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lawrence J. Winship.
The Plant Cell | 2009
Sylvester T. McKenna; Joseph G. Kunkel; Maurice Bosch; Caleb M. Rounds; Luis Vidali; Lawrence J. Winship; Peter K. Hepler
We examined exocytosis during oscillatory growth in lily (Lilium formosanum and Lilium longiflorum) and tobacco (Nicotiana tabacum) pollen tubes using three markers: (1) changes in cell wall thickness by Nomarski differential interference contrast (DIC), (2) changes in apical cell wall fluorescence in cells stained with propidium iodide (PI), and (3) changes in apical wall fluorescence in cells expressing tobacco pectin methyl esterase fused to green fluorescent protein (PME-GFP). Using PI fluorescence, we quantified oscillatory changes in the amount of wall material from both lily and tobacco pollen tubes. Measurement of wall thickness by DIC was only possible with lily due to limitations of microscope resolution. PME-GFP, a direct marker for exocytosis, only provides information in tobacco because its expression in lily causes growth inhibition and cell death. We show that exocytosis in pollen tubes oscillates and leads the increase in growth rate; the mean phase difference between exocytosis and growth is –98° ± 3° in lily and –124° ± 4° in tobacco. Statistical analyses reveal that the anticipatory increase in wall material predicts, to a high degree, the rate and extent of the subsequent growth surge. Exocytosis emerges as a prime candidate for the initiation and regulation of oscillatory pollen tube growth.
Trends in Plant Science | 2010
Lawrence J. Winship; Gerhard Obermeyer; Anja Geitmann; Peter K. Hepler
Significant controversy still swirls around the regulation of extension by tip-growing cells, particularly during stable, oscillatory growth of pollen tubes. One explanation proposes that turgor pressure is both the controlling and driving force. We refute this hypothesis on theoretical and evidentiary grounds. Direct measurement of intracellular pressure reveals constant turgor even as growth rates change. Measured ion fluxes, notably potassium, are insufficient to account for the requisite osmotic changes. Water movement, and hence pressure gradients, occur throughout the cell, unrestricted to local domains. Increases in hydrostatic pressure alone would force water out of the cell rather than cause increased growth. We have recently demonstrated concomitant changes in the apical cell wall that account fully for observed changes in growth rate.
Molecular Plant | 2013
Peter K. Hepler; Caleb M. Rounds; Lawrence J. Winship
In this review, we address the question of how the tip-growing pollen tube achieves its rapid rate of elongation while maintaining an intact cell wall. Although turgor is essential for growth to occur, the local expansion rate is controlled by local changes in the viscosity of the apical wall. We focus on several different structures and underlying processes that are thought to be major participants including exocytosis, the organization and activity of the actin cytoskeleton, calcium and proton physiology, and cellular energetics. We think that the actin cytoskeleton, in particular the apical cortical actin fringe, directs the flow of vesicles to the apical domain, where they fuse with the plasma membrane and contribute their contents to the expanding cell wall. While pH gradients, as generated by a proton-ATPase located on the plasma membrane along the side of the clear zone, may regulate rapid actin turnover and new polymerization in the fringe, the tip-focused calcium gradient biases secretion towards the polar axis. The recent data showing that exocytosis of new wall material precedes and predicts the process of cell elongation provide support for the idea that the intussusception of newly secreted pectin contributes to decreases in apical wall viscosity and to cell expansion. Other prime factors will be the localization and activity of the enzyme pectin methyl-esterase, and the chelation of calcium by pectic acids. Finally, we acknowledge a role for reactive oxygen species in the control of wall viscosity.
Trends in Plant Science | 2012
Peter K. Hepler; Joseph G. Kunkel; Caleb M. Rounds; Lawrence J. Winship
Growing pollen tubes require calcium to maintain a tip-focused cytosolic gradient and as a constituent of the constantly expanding cell wall. Advances in cell and molecular biology as well as electrophysiology implicate several candidate channels and receptors in the flow of calcium into the cell. In this review we discuss the channels that have been identified and consider the role of the growing tip cell wall acting as a sink for calcium thus accounting for differences in oscillatory phase between influx measured on the outside of the cell and changes in tip concentration inside the cell. We also briefly draw attention to uptake mechanisms that restrict and shape the calcium signature in the growing pollen tube.
Plant Physiology | 2011
Caleb M. Rounds; Eric Lubeck; Peter K. Hepler; Lawrence J. Winship
We have used propidium iodide (PI) to investigate the dynamic properties of the primary cell wall at the apex of Arabidopsis (Arabidopsis thaliana) root hairs and pollen tubes and in lily (Lilium formosanum) pollen tubes. Our results show that in root hairs, as in pollen tubes, oscillatory peaks in PI fluorescence precede growth rate oscillations. Pectin forms the primary component of the cell wall at the tip of both root hairs and pollen tubes. Given the electronic structure of PI, we investigated whether PI binds to pectins in a manner analogous to Ca2+ binding. We first show that Ca2+ is able to abrogate PI growth inhibition in a dose-dependent manner. PI fluorescence itself also relies directly on the amount of Ca2+ in the growth solution. Exogenous pectin methyl esterase treatment of pollen tubes, which demethoxylates pectins, freeing more Ca2+-binding sites, leads to a dramatic increase in PI fluorescence. Treatment with pectinase leads to a corresponding decrease in fluorescence. These results are consistent with the hypothesis that PI binds to demethoxylated pectins. Unlike other pectin stains, PI at low yet useful concentration is vital and specifically does not alter the tip-focused Ca2+ gradient or growth oscillations. These data suggest that pectin secretion at the apex of tip-growing plant cells plays a critical role in regulating growth, and PI represents an excellent tool for examining the role of pectin and of Ca2+ in tip growth.
Trends in Plant Science | 2011
Lawrence J. Winship; Gerhard Obermeyer; Anja Geitmann; Peter K. Hepler
The primary goal of our previous opinion paper (Winship, L.J. et al. (2010) Trends Plant Sci. 15, 363-369) [1] was to put two models for the control of pollen tube growth on the same theoretical and biophysical footing, and to then test both for consistency with basic principles and with experimental data. Our central thesis, then and now, is that the biophysical and biochemical mechanisms that enable pollen tubes to grow and to respond to their environment evolved in a physical context constrained by known, inescapable principles. First, pressure is a scalar, not a vector quantity. Second, the water movement in and out of plant cells that generates pressure is passive, not active, and is controlled by differences in water potential. Here we respond to the issues raised by Zonia and Munnik (Trends Plant Sci. 2011; this issue) [2] in the light of new evidence concerning turgor pressure and pollen tube growth rates.
Aob Plants | 2011
Caleb M. Rounds; Lawrence J. Winship; Peter K. Hepler
This review covers historical and recent progress in understanding how respiration, fermentation and mitochondria contribute to pollen tube growth. It also summarizes what is known about the energetic requirements of this growth. Molecular mechanisms are viewed in the context of pollen tube physiology, a necessary perspective to understanding pollen tube growth.
Plant Physiology | 2014
Caleb M. Rounds; Peter K. Hepler; Lawrence J. Winship
Inhibition of lily pollen tube growth with three different agents, brefeldin A, latrunculin B, and potassium cyanide, provides evidence that the apical actin fringe contributes to localized pectin deposition and polarized cell growth. In lily (Lilium formosanum) pollen tubes, pectin, a major component of the cell wall, is delivered through regulated exocytosis. The targeted transport and secretion of the pectin-containing vesicles may be controlled by the cortical actin fringe at the pollen tube apex. Here, we address the role of the actin fringe using three different inhibitors of growth: brefeldin A, latrunculin B, and potassium cyanide. Brefeldin A blocks membrane trafficking and inhibits exocytosis in pollen tubes; it also leads to the degradation of the actin fringe and the formation of an aggregate of filamentous actin at the base of the clear zone. Latrunculin B, which depolymerizes filamentous actin, markedly slows growth but allows focused pectin deposition to continue. Of note, the locus of deposition shifts frequently and correlates with changes in the direction of growth. Finally, potassium cyanide, an electron transport chain inhibitor, briefly stops growth while causing the actin fringe to completely disappear. Pectin deposition continues but lacks focus, instead being delivered in a wide arc across the pollen tube tip. These data support a model in which the actin fringe contributes to the focused secretion of pectin to the apical cell wall and, thus, to the polarized growth of the pollen tube.
Plant and Soil | 1985
Lawrence J. Winship; John D. Tjepkema
SummaryUsing a root nodule cuvette and a continuous flow gas exchange system, we simultaneously measured the rates of carbon dioxide evolution, oxygen uptake and acetylene reduction by nodules ofAlnus rubra. This system allowed us to measure the respiration rates of single nodules and to determine the effects of oxygen concentration and temperature on the energy cost of nitrogen fixation. Energy cost was virtually unchanged (2.8–3.5 moles of carbon dioxide or oxygen per mole of ethylene) from 16 to 26°C (pO2=20 kPa) while respiration and nitrogenase activity were highly temperature dependent. At temperatures below 16°C, nitrogenase activity decreased more than did respiration and as a result, energy cost rose sharply. Acetylene reduction ceased below 8°C. Inhibition of nitrogenase activity at low temperatures was rapidly reversed upon return to higher temperatures. At high temperatures (above 30°C) nitrogenase activity declined irreversibly, while respiration and energy cost increased.Energy cost was nearly unchanged at oxygen partial pressures of 5 to 20 kPa (temperature of 20°C). Respiration and nitrogenase activity were strongly correlated with oxygen tension. Below 5 kPa, acetylene reduction and oxygen uptake decreased sharply while production of carbon dioxide increased, indicating fermentation. Fermentation alone was unable to support nitrogenase activity. Acetylene reduction was independent of oxygen concentration from 15 to 30 kPa. Nitrogenase activity decreased and energy cost rose above 30 kPa until nearly complete inactivation of nitrogenase at 70–80 kPa. Activity declined gradually, such that acetylene reduction at a constant oxygen concentration was stable, but showed further inactivation when oxygen concentration was once again increased. Alder nodules appear to consist of a large number of compartments that differ in the degree to which nitrogenase is protected from excess oxygen.
Plant Physiology | 2010
Caleb M. Rounds; Peter K. Hepler; Sasha J. Fuller; Lawrence J. Winship
Oscillatory tip growth in pollen tubes depends on prodigious amounts of energy. We have tested the hypothesis that oscillations in the electron transport chain lead to growth oscillations in lily (Lilium formosanum). Using three respiratory inhibitors, oligomycin, antimycin A, and cyanide, we find that pollen tube growth is much less sensitive to respiratory inhibition than respiration is. All three block respiration at concentrations severalfold lower than necessary to inhibit growth. Mitochondrial NAD(P)H and potentiometric JC-1 fluorescence, employed as markers for electron transport chain activity, rise rapidly in response to oligomycin, as expected. Pollen tube growth stops for several minutes before resuming. Subsequent growth has a lower mean rate, but continues to oscillate, albeit with a longer period. NAD(P)H fluorescence no longer exhibits coherent oscillations, and mitochondria no longer congregate directly behind the apex: they distribute evenly throughout the cell. Postinhibition growth relies on aerobic fermentation for energy production as revealed by an increase in ethanol in the media. These data suggest that oscillatory growth depends not on a single oscillatory pacemaker but rather is an emergent property arising from a number of stable limit cycles.