Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lawrence M. Witmer is active.

Publication


Featured researches published by Lawrence M. Witmer.


Journal of Vertebrate Paleontology | 1997

The Evolution of the Antorbital Cavity of Archosaurs: A Study in Soft-Tissue Reconstruction in the Fossil Record with an Analysis of the Function of Pneumaticity

Lawrence M. Witmer

ABSTRACT The most commonly cited apomorphy of Archosauriformes is an opening in the snout known as the antorbital cavity. Despite the ubiquity and prominence of the antorbital cavity, its function and importance in craniofacial evolution have been problematic. Discovering the significance of the antorbital cavity is a two step process: first, establishing the function of the bony cavity (that is, its soft-tissue relations), and second, determining the biological role of the enclosed structure. The first step is the most fundamental, and hence is examined at length. Three hypotheses for the function of the antorbital cavity have been advanced, suggesting that it housed (1) a gland, (2) a muscle, or (3) a paranasal air sinus. Thus, resolution is correctly viewed as a “soft-tissue problem,” and is addressed within the context of the extant phylogenetic bracket (EPB) approach for reconstructing the unpreserved features of fossil organisms. The soft-anatomical relations of the antorbital cavity (or any bony st...


Nature | 2003

Neuroanatomy of flying reptiles and implications for flight, posture and behaviour

Lawrence M. Witmer; Sankar Chatterjee; Jonathan Franzosa; Timothy Rowe

Comparison of birds and pterosaurs, the two archosaurian flyers, sheds light on adaptation to an aerial lifestyle. The neurological basis of control holds particular interest in that flight demands on sensory integration, equilibrium, and muscular coordination are acute. Here we compare the brain and vestibular apparatus in two pterosaurs based on high-resolution computed tomographic (CT) scans from which we constructed digital endocasts. Although general neural organization resembles birds, pterosaurs had smaller brains relative to body mass than do birds. This difference probably has more to do with phylogeny than flight, in that birds evolved from nonavian theropods that had already established trends for greater encephalization. Orientation of the osseous labyrinth relative to the long axis of the skull was different in these two pterosaur species, suggesting very different head postures and reflecting differing behaviours. Their enlarged semicircular canals reflect a highly refined organ of equilibrium, which is concordant with pterosaurs being visually based, aerial predators. Their enormous cerebellar floccular lobes may suggest neural integration of extensive sensory information from the wing, further enhancing eye- and neck-based reflex mechanisms for stabilizing gaze.


Journal of Morphology | 1995

Homology of facial structures in extant archosaurs (birds and crocodilians), with special reference to paranasal pneumaticity and nasal conchae

Lawrence M. Witmer

Homology of virtually all major components of facial anatomy is assessed in Archosauria in order to address the function of the antorbital cavity, an engimatic structure that is diagnostic for the group. Proposed functions center on its being a housing for a gland, a muscle, or a paranasal air sinus. Homology is approached in the context of the Extant Phylogenetic Bracket method of reconstructing unpreserved aspects of extinct organisms. Facial anatomy and its ontogeny was studied in extant archosaurs (birds and crocodilians) to determine the osteological correlates of each soft‐tissue component; resemblances between birds and crocodilians comprised the similarity test of homology. The congruence test of homology involved surveying phylogenetically relevant fossil archosaurs for these bony signatures. The facial anatomy of extant birds and crocodilians is examined in detail to provide background and to discover those apomorphic aspects that contribute to the divergent specialization of these two groups and thus obscure homologies. Birds apomorphically show enlarged eyeballs, expanded nasal vestibules, and reduced maxillae, whereas crocodilian faces are dorsoventrally flattened (due to nasal rotation) and elongated. Most facial attributes of archosaurs are demonstrably homologous and in fact characterize much more inclusive groups. Special emphasis has been placed on the nasal conchae and paranasal air sinuses. Within Amniota, the following conchal structures are homologous, and all others are neomorphs: Avian caudal concha, crocodilian concha + preconcha, Sphenodon caudal concha, squamate concha, and probably the mammalian crista semicircularis. The avian antorbital paranasal air sinus is homologous with the crocodilian caviconchal sinus; the maxillary sinus of placental mammals is not homologous with the archosaurian paranasal sinus. With regard to the function of the antorbital cavity, archosaurs possess homologous nasal glands, dorsal pterygoideus muscles, and paranasal air sinuses, but the osteological correlates of only the paranasal sinus involve the antorbital fenestrae and fossae. Thus, the antorbital cavity is best interpreted as principally a pneumatic structure.


Archive | 2008

Using CT to Peer into the Past: 3D Visualization of the Brain and Ear Regions of Birds, Crocodiles, and Nonavian Dinosaurs

Lawrence M. Witmer; Ryan C. Ridgely; David L. Dufeau; Molly C. Semones

Until relatively recently, information on the internal skull structures of fossil taxa relied on fortuitous breaks, aggressive removal of rock matrix (Galton 1989, 2001), sectioning with a saw (Osborn 1912), or serial ground thin-sectioning (Stensio 1963), all of which potentially risk damage to the fossil specimen (or even consume it entirely in the case of ground thin-sections). In some cases, casts of internal structures, such as the brain cavity and labyrinth of the inner ear, were preserved as ‘natural endocasts’ by infilling with more resistant matrix (e.g., Newton 1888). In most cases, however, physical endocasts are made after matrix removal by coating internal cavities with latex and then removing the cured replica, referred to as a latex endocast (Radinsky 1968; Jerison 1973; Hopson 1979). The process of making latex endocasts poses further risks to the fossil, and for many fragile specimens, such an approach has been unfeasible.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2009

New Insights Into the Brain, Braincase, and Ear Region of Tyrannosaurs (Dinosauria, Theropoda), with Implications for Sensory Organization and Behavior

Lawrence M. Witmer; Ryan C. Ridgely

The braincase region of tyrannosaurs was investigated to provide insights on anatomical attributes relevant to inferences of sensory biology and behavior. CT scanning focused on three specimens of Tyrannosaurus rex, a juvenile Gorgosaurus, and the controversial Cleveland skull (CMNH 7541). Analysis shows that the cerebral hemispheres were enlarged, but conflicting information on the optic lobes suggests that brain conformation was not fully avian. Previous estimates of olfactory bulb size for T. rex were much too large, but even the corrected sizes are relatively larger than other theropods, suggesting that odor detection was indeed of particular importance to tyrannosaurs. The inner ears show a number of coelurosaurian traits, such as elongate and rounded and rostral, lateral semicircular canals, and incipient twisting of the common crus, which we interpret to be related to enhanced reflexes coordinating rapid eye and head movements. The cochlea is elongate, which, coupled with the finding of extensive tympanic pneumaticity, supports the inference of behavioral emphasis of low‐frequency sounds. Three main groups of sinuses pneumatized the braincase, and there are a number of perhaps systematically relevant differences. Orientation of the endosseous labyrinth reveals that alert head postures of T. rex and Gorgosaurus were somewhat depressed below the horizontal, but the Cleveland skull had a very strongly down‐turned posture. It is concluded that tyrannosaur sensory biology is consistent with their predatory coelurosaurian heritage, with emphasis on relatively quick, coordinated eye and head movements, and probably sensitive low‐frequency hearing; tyrannosaurs apomorphically enhanced their olfactory apparatus. The taxonomic status of the Cleveland skull remains unresolved. Anat Rec, 292:1266–1296, 2009.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2008

The Paranasal Air Sinuses of Predatory and Armored Dinosaurs (Archosauria: Theropoda and Ankylosauria) and Their Contribution to Cephalic Structure

Lawrence M. Witmer; Ryan C. Ridgely

The paranasal air sinuses and nasal cavities were studied along with other cephalic spaces (brain cavity, paratympanic sinuses) in certain dinosaurs via CT scanning and 3D visualization to document the anatomy and examine the contribution of the sinuses to the morphological organization of the head as a whole. Two representatives each of two dinosaur clades are compared: the theropod saurischians Majungasaurus and Tyrannosaurus and the ankylosaurian ornithischians Panoplosaurus and Euoplocephalus. Their extant archosaurian outgroups, birds and crocodilians (exemplified by ostrich and alligator), display a diversity of paranasal sinuses, yet they share only a single homologous antorbital sinus, which in birds has an important subsidiary diverticulum, the suborbital sinus. Both of the theropods had a large antorbital sinus that pneumatized many of the facial and palatal bones as well as a birdlike suborbital sinus. Given that the suborbital sinus interleaves with jaw muscles, the paranasal sinuses of at least some theropods (including birds) were actively ventilated rather than being dead‐air spaces. Although many ankylosaurians have been thought to have had extensive paranasal sinuses, most of the snout is instead (and surprisingly) often occupied by a highly convoluted airway. Digital segmentation, coupled with 3D visualization and analysis, allows the positions of the sinuses to be viewed in place within both the skull and the head and then measured volumetrically. These quantitative data allow the first reliable estimates of dinosaur head mass and an assessment of the potential savings in mass afforded by the sinuses. Anat Rec, 291:1362–1388, 2008.


Proceedings of the Royal Society of London B: Biological Sciences | 2011

Evolution of olfaction in non-avian theropod dinosaurs and birds

Darla K. Zelenitsky; François Therrien; Ryan C. Ridgely; Amanda R. McGee; Lawrence M. Witmer

Little is known about the olfactory capabilities of extinct basal (non-neornithine) birds or the evolutionary changes in olfaction that occurred from non-avian theropods through modern birds. Although modern birds are known to have diverse olfactory capabilities, olfaction is generally considered to have declined during avian evolution as visual and vestibular sensory enhancements occurred in association with flight. To test the hypothesis that olfaction diminished through avian evolution, we assessed relative olfactory bulb size, here used as a neuroanatomical proxy for olfactory capabilities, in 157 species of non-avian theropods, fossil birds and living birds. We show that relative olfactory bulb size increased during non-avian maniraptoriform evolution, remained stable across the non-avian theropod/bird transition, and increased during basal bird and early neornithine evolution. From early neornithines through a major part of neornithine evolution, the relative size of the olfactory bulbs remained stable before decreasing in derived neoavian clades. Our results show that, rather than decreasing, the importance of olfaction actually increased during early bird evolution, representing a previously unrecognized sensory enhancement. The relatively larger olfactory bulbs of earliest neornithines, compared with those of basal birds, may have endowed neornithines with improved olfaction for more effective foraging or navigation skills, which in turn may have been a factor allowing them to survive the end-Cretaceous mass extinction.


Journal of Anatomy | 2016

Diffusible iodine-based contrast-enhanced computed tomography (diceCT) : an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues.

Paul M. Gignac; Nathan J. Kley; Julia A. Clarke; Matthew W. Colbert; Ashley C. Morhardt; Donald Cerio; Ian N. Cost; Philip G. Cox; Juan D. Daza; Catherine M. Early; M. Scott Echols; R. Mark Henkelman; A. Nele Herdina; Casey M. Holliday; Zhiheng Li; Kristin Mahlow; Samer S. Merchant; Johannes Müller; Courtney P. Orsbon; Daniel J. Paluh; Monte L. Thies; Henry P. Tsai; Lawrence M. Witmer

Morphologists have historically had to rely on destructive procedures to visualize the three‐dimensional (3‐D) anatomy of animals. More recently, however, non‐destructive techniques have come to the forefront. These include X‐ray computed tomography (CT), which has been used most commonly to examine the mineralized, hard‐tissue anatomy of living and fossil metazoans. One relatively new and potentially transformative aspect of current CT‐based research is the use of chemical agents to render visible, and differentiate between, soft‐tissue structures in X‐ray images. Specifically, iodine has emerged as one of the most widely used of these contrast agents among animal morphologists due to its ease of handling, cost effectiveness, and differential affinities for major types of soft tissues. The rapid adoption of iodine‐based contrast agents has resulted in a proliferation of distinct specimen preparations and scanning parameter choices, as well as an increasing variety of imaging hardware and software preferences. Here we provide a critical review of the recent contributions to iodine‐based, contrast‐enhanced CT research to enable researchers just beginning to employ contrast enhancement to make sense of this complex new landscape of methodologies. We provide a detailed summary of recent case studies, assess factors that govern success at each step of the specimen storage, preparation, and imaging processes, and make recommendations for standardizing both techniques and reporting practices. Finally, we discuss potential cutting‐edge applications of diffusible iodine‐based contrast‐enhanced computed tomography (diceCT) and the issues that must still be overcome to facilitate the broader adoption of diceCT going forward.


Proceedings of the Royal Society of London B: Biological Sciences | 2009

Inner ear anatomy is a proxy for deducing auditory capability and behaviour in reptiles and birds

Stig A. Walsh; Paul M. Barrett; Angela C. Milner; Geoffrey A. Manley; Lawrence M. Witmer

Inferences of hearing capabilities and audition-related behaviours in extinct reptiles and birds have previously been based on comparing cochlear duct dimensions with those of living species. However, the relationship between inner-ear bony anatomy and hearing ability or vocalization has never been tested rigorously in extant or fossil taxa. Here, micro-computed tomographic analysis is used to investigate whether simple endosseous cochlear duct (ECD) measurements can be fitted to models of hearing sensitivity, vocalization, sociality and environmental preference in 59 extant reptile and bird species, selected based on their vocalization ability. Length, rostrocaudal/mediolateral width and volume measurements were taken from ECD virtual endocasts and scaled to basicranial length. Multiple regression of these data with measures of hearing sensitivity, vocal complexity, sociality and environmental preference recovered positive correlations between ECD length and hearing range/mean frequency, vocal complexity, the behavioural traits of pair bonding and living in large aggregations, and a negative correlation between ECD length/rostrocaudal width and aquatic environments. No other dimensions correlated with these variables. Our results suggest that ECD length can be used to predict mean hearing frequency and range in fossil taxa, and that this measure may also predict vocal complexity and large group sociality given comprehensive datasets.


Cretaceous Research | 2003

The earliest-known duck-billed dinosaur from deposits of late Early Cretaceous age in northwest China and hadrosaur evolution

Hai-lu You; Zhe-xi Luo; Neil H. Shubin; Lawrence M. Witmer; Zhi-lu Tang; Feng Tang

A new dinosaur of Early Cretaceous age was recently discovered in the Gobi Desert of northwest China. It is more closely related to Late Cretaceous hadrosaurids than to Early Cretaceous iguanodontids. It occupies the most basal position in the phylogeny of all duck-billed dinosaurs, or the Hadrosauroidea. This early hadrosauroid sheds new light on the origin of the herbivorous feeding specializations of the Late Cretaceous duck-billed dinosaurs, and corroborates the view that the Iguanodontidae and the Hadrosauroidea are monophyletic clades, with the former characterized by an enlarged maxilla as the main mechanism for mastication, and the latter diagnosed by a smaller yet more mobile maxilla with an elaborate dental battery, separated by a diastema from the enlarged premaxilla. Our study also suggests that the Hadrosauroidea had most likely originated in Asia in the Early Cretaceous before this clade diversified and spread to other Laurasian continents during the Late Cretaceous

Collaboration


Dive into the Lawrence M. Witmer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tobin L. Hieronymus

Northeast Ohio Medical University

View shared research outputs
Top Co-Authors

Avatar

Fabien Knoll

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott D. Sampson

New York Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Timothy Rowe

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge