Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lawrence Price is active.

Publication


Featured researches published by Lawrence Price.


The Astrophysical Journal | 2014

The first two years of electromagnetic follow-up with advanced LIGO and Virgo

L. P. Singer; Lawrence Price; B. Farr; A. L. Urban; C. Pankow; Salvatore Vitale; J. Veitch; W. M. Farr; Chad Hanna; K. C. Cannon; Tom Downes; P. B. Graff; Carl-Johan Haster; Ilya Mandel; T. L. Sidery; Alberto Vecchio

We anticipate the first direct detections of gravitational waves (GWs) with Advanced LIGO and Virgo later this decade. Though this groundbreaking technical achievement will be its own reward, a still greater prize could be observations of compact binary mergers in both gravitational and electromagnetic channels simultaneously. During Advanced LIGO and Virgos first two years of operation, 2015 through 2016, we expect the global GW detector array to improve in sensitivity and livetime and expand from two to three detectors. We model the detection rate and the sky localization accuracy for binary neutron star (BNS) mergers across this transition. We have analyzed a large, astrophysically motivated source population using real-time detection and sky localization codes and higher-latency parameter estimation codes that have been expressly built for operation in the Advanced LIGO/Virgo era. We show that for most BNS events, the rapid sky localization, available about a minute after a detection, is as accurate as the full parameter estimation. We demonstrate that Advanced Virgo will play an important role in sky localization, even though it is anticipated to come online with only one-third as much sensitivity as the Advanced LIGO detectors. We find that the median 90% confidence region shrinks from ~500 deg^2 in 2015 to ~200 deg^2 in 2016. A few distinct scenarios for the first LIGO/Virgo detections emerge from our simulations.


The Astrophysical Journal | 2015

PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA

C. P. L. Berry; Ilya Mandel; H. Middleton; L. P. Singer; A. L. Urban; Alberto Vecchio; Salvatore Vitale; K. C. Cannon; B. Farr; W. M. Farr; P. B. Graff; Chad Hanna; Carl-Johan Haster; S. R. P. Mohapatra; C. Pankow; Lawrence Price; T. L. Sidery; J. Veitch

Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not only to make the first direct detection of GWs, but also to make inferences about the source systems. Binary neutron-star mergers are among the most promising sources. We investigate the performance of the parameter-estimation (PE) pipeline that will be used during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) in 2015: we concentrate on the ability to reconstruct the source location on the sky, but also consider the ability to measure masses and the distance. Accurate, rapid sky localization is necessary to alert electromagnetic (EM) observatories so that they can perform follow-up searches for counterpart transient events. We consider PE accuracy in the presence of non-stationary, non-Gaussian noise. We find that the character of the noise makes negligible difference to the PE performance at a given signal-to-noise ratio. The source luminosity distance can only be poorly constrained, since the median 90% (50%) credible interval scaled with respect to the true distance is 0.85 (0.38). However, the chirp mass is well measured. Our chirp-mass estimates are subject to systematic error because we used gravitational-waveform templates without component spin to carry out inference on signals with moderate spins, but the total error is typically less than 10^(-3) M_☉. The median 90% (50%) credible region for sky localization is ~ 600 deg^2 (~150 deg^2), with 3% (30%) of detected events localized within 100 deg^2. Early aLIGO, with only two detectors, will have a sky-localization accuracy for binary neutron stars of hundreds of square degrees; this makes EM follow-up challenging, but not impossible.


Physical Review D | 2009

Optimal strategies for gravitational wave stochastic background searches in pulsar timing data

Melissa Anholm; S. Ballmer; Jolien D. E. Creighton; Lawrence Price; X. Siemens

A low frequency stochastic background of gravitational waves may be detected by pulsar timing experiments in the next 5 to 10 yr. Using methods developed to analyze interferometric gravitational wave data, in this paper we lay out the optimal techniques to detect a background of gravitational waves using a pulsar timing array. We show that for pulsar distances and gravitational wave frequencies typical of pulsar timing experiments, neglecting the effect of the metric perturbation at the pulsar does not result in a significant deviation from optimality. We discuss methods for setting upper limits using the optimal statistic, show how to construct skymaps using the pulsar timing array, and consider several issues associated with realistic analysis of pulsar timing data.


Physical Review D | 2016

Rapid Bayesian position reconstruction for gravitational-wave transients

L. P. Singer; Lawrence Price

Within the next few years, Advanced LIGO and Virgo should detect gravitational waves from binary neutron star and neutron star-black hole mergers. These sources are also predicted to power a broad array of electromagnetic transients. Because the electromagnetic signatures can be faint and fade rapidly, observing them hinges on rapidly inferring the sky location from the gravitational-wave observations. Markov chain Monte Carlo methods for gravitational-wave parameter estimation can take hours or more. We introduce BAYESTAR, a rapid, Bayesian, non-Markov chain Monte Carlo sky localization algorithm that takes just seconds to produce probability sky maps that are comparable in accuracy to the full analysis. Prompt localizations from BAYESTAR will make it possible to search electromagnetic counterparts of compact binary mergers.


The Astrophysical Journal | 2016

Going the Distance: Mapping Host Galaxies of LIGO and Virgo Sources in Three Dimensions Using Local Cosmography and Targeted Follow-up

L. P. Singer; Hsin-Yu Chen; Daniel E. Holz; W. M. Farr; Lawrence Price; V. Raymond; S. Bradley Cenko; Neil Gehrels; John K. Cannizzo; Mansi M. Kasliwal; S. Nissanke; M. W. Coughlin; B. Farr; A. L. Urban; Salvatore Vitale; J. Veitch; P. B. Graff; C. P. L. Berry; S. R. P. Mohapatra; Ilya Mandel

The Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) discovered gravitational waves (GWs) from a binary black hole merger in 2015 September and may soon observe signals from neutron star mergers. There is considerable interest in searching for their faint and rapidly fading electromagnetic (EM) counterparts, though GW position uncertainties are as coarse as hundreds of square degrees. Because LIGOs sensitivity to binary neutron stars is limited to the local universe, the area on the sky that must be searched could be reduced by weighting positions by mass, luminosity, or star formation in nearby galaxies. Since GW observations provide information about luminosity distance, combining the reconstructed volume with positions and redshifts of galaxies could reduce the area even more dramatically. A key missing ingredient has been a rapid GW parameter estimation algorithm that reconstructs the full distribution of sky location and distance. We demonstrate the first such algorithm, which takes under a minute, fast enough to enable immediate EM follow-up. By combining the three-dimensional posterior with a galaxy catalog, we can reduce the number of galaxies that could conceivably host the event by a factor of 1.4, the total exposure time for the Swift X-ray Telescope by a factor of 2, the total exposure time for a synoptic optical survey by a factor of 2, and the total exposure time for a narrow-field optical telescope by a factor of 3. This encourages us to suggest a new role for small field of view optical instruments in performing targeted searches of the most massive galaxies within the reconstructed volumes.


Physical Review D | 2014

Reconstructing the Sky Location of Gravitational-Wave Detected Compact Binary Systems: Methodology for Testing and Comparison

T. Sidney; B. E. Aylott; N. Christensen; B. Farr; W. M. Farr; Farhan Feroz; Jonathan R. Gair; K. Grover; P. B. Graff; Chad Hanna; V. Kalogera; Ilya Mandel; R. O'Shaughnessy; M. Pitkin; Lawrence Price; V. Raymond; C. Roever; L. P. Singer; M. vanderSluys; Roger Smith; A. Vecchio; J. Veitch; S. Vitale

The problem of reconstructing the sky position of compact binary coalescences detected via gravitational waves is a central one for future observations with the ground-based network of gravitational-wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different techniques for sky localization have been independently developed. They can be divided in two broad categories: fully coherent Bayesian techniques, which are high latency and aimed at in-depth studies of all the parameters of a source, including sky position, and “triangulation-based” techniques, which exploit the data products from the search stage of the analysis to provide an almost real-time approximation of the posterior probability density function of the sky location of a detection candidate. These techniques have previously been applied to data collected during the last science runs of gravitational-wave detectors operating in the so-called initial configuration. Here, we develop and analyze methods for assessing the self consistency of parameter estimation methods and carrying out fair comparisons between different algorithms, addressing issues of efficiency and optimality. These methods are general, and can be applied to parameter estimation problems other than sky localization. We apply these methods to two existing sky localization techniques representing the two above-mentioned categories, using a set of simulated inspiral-only signals from compact binary systems with a total mass of ≤20M_⊙ and nonspinning components. We compare the relative advantages and costs of the two techniques and show that sky location uncertainties are on average a factor ≈20 smaller for fully coherent techniques than for the specific variant of the triangulation-based technique used during the last science runs, at the expense of a factor ≈1000 longer processing time.


The Astrophysical Journal | 2016

Parameter estimation on gravitational waves from neutron-star binaries with spinning components

B. Farr; C. P. L. Berry; W. M. Farr; Carl-Johan Haster; H. Middleton; K. C. Cannon; P. B. Graff; Chad Hanna; Ilya Mandel; C. Pankow; Lawrence Price; T. L. Sidery; L. P. Singer; A. L. Urban; Alberto Vecchio; J. Veitch; Salvatore Vitale

Inspiraling binary neutron stars are expected to be one of the most significant sources of gravitational-wave signals for the new generation of advanced ground-based detectors. We investigate how well we could hope to measure properties of these binaries using the Advanced LIGO detectors, which began operation in September 2015. We study an astrophysically motivated population of sources (binary components with masses


Physical Review D | 2010

Gravitational Self-force in a Radiation Gauge

Tobias S. Keidl; Abhay G. Shah; John L. Friedman; Dong-Hoon Kim; Lawrence Price

1.2~\mathrm{M}_\odot


Physical Review D | 2011

Conservative, gravitational self-force for a particle in circular orbit around a Schwarzschild black hole in a radiation gauge

Abhay G. Shah; Tobias S. Keidl; John L. Friedman; Dong-Hoon Kim; Lawrence Price

--


Physical Review D | 2008

Stochastic backgrounds of gravitational waves from cosmological sources : Techniques and applications to preheating

Lawrence Price; X. Siemens

1.6~\mathrm{M}_\odot

Collaboration


Dive into the Lawrence Price's collaboration.

Top Co-Authors

Avatar

L. P. Singer

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

B. Farr

University of Chicago

View shared research outputs
Top Co-Authors

Avatar

Ilya Mandel

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

J. Veitch

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

W. M. Farr

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

C. Pankow

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

John L. Friedman

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. L. Urban

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Salvatore Vitale

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge