Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lawrence Rudnick is active.

Publication


Featured researches published by Lawrence Rudnick.


Publications of the Astronomical Society of Australia | 2011

EMU: Evolutionary Map of the Universe

R. P. Norris; Andrew M. Hopkins; J. Afonso; Steven Brown; James J. Condon; Loretta Dunne; Ilana J. Feain; R. Hollow; M. J. Jarvis; M. Johnston-Hollitt; E. Lenc; Enno Middelberg; P. Padovani; I. Prandoni; Lawrence Rudnick; N. Seymour; Grazia Umana; H. Andernach; D. M. Alexander; P. N. Appleton; David Bacon; Julie Banfield; W. Becker; Michael J. I. Brown; P. Ciliegi; C. A. Jackson; Stephen Anthony Eales; A. C. Edge; B. M. Gaensler; G. Giovannini

EMU is a wide-field radio continuum survey planned for the new Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The primary goal of EMU is to make a deep (rms ~10 μJy/beam) radio continuum survey of the entire Southern sky at 1.3 GHz, extending as far North as +30° declination, with a resolution of 10 arcsec. EMU is expected to detect and catalogue about 70 million galaxies, including typical star-forming galaxies up to z ~ 1, powerful starbursts to even greater redshifts, and active galactic nuclei to the edge of the visible Universe. It will undoubtedly discover new classes of object. This paper defines the science goals and parameters of the survey, and describes the development of techniques necessary to maximise the science return from EMU.


The Astrophysical Journal | 2004

A MILLION-SECOND CHANDRA VIEW OF CASSIOPEIA A

Una Hwang; J. Martin Laming; Carles Badenes; Fred Berendse; John M. Blondin; Denis F. Cioffi; Tracey Ann Delaney; Daniel Dewey; Robert A. Fesen; Kathryn A. Flanagan; Christopher L. Fryer; Parviz Ghavamian; John P. Hughes; Jon A. Morse; Paul P. Plucinsky; Robert Petre; M. Pohl; Lawrence Rudnick; Ravi Sankrit; Patrick O. Slane; Randall K. Smith; J. Vink; Jessica S. Warren

We introduce a million second observation of the supernova remnant Cassiopeia A with the Chandra X-Ray Observatory. The bipolar structure of the Si-rich ejecta (northeast jet and southwest counterpart) is clearly evident in the new images, and their chemical similarity is confirmed by their spectra. These are most likely due to jets of ejecta as opposed to cavities in the circumstellar medium, since we can reject simple models for the latter. The properties of these jets and the Fe-rich ejecta will provide clues to the explosion of Cas A.


The Astrophysical Journal | 2007

Extragalactic Radio Sources and the WMAP Cold Spot

Lawrence Rudnick; Shea Brown; Liliya L. R. Williams

We detect a dip of 20%-45% in the surface brightness and number counts of NRAO VLA Sky Survey (NVSS) sources smoothed to a few degrees at the location of the WMAP cold spot. The dip has structure on scales of ~1° to 10°. Together with independent all-sky wavelet analyses, our results suggest that the dip in extragalactic brightness and number counts and the WMAP cold spot are physically related, i.e., that the coincidence is neither a statistical anomaly nor a WMAP foreground-correction problem. If the cold spot does originate from structures at modest redshifts, as we suggest, then there is no remaining need for non-Gaussian processes at the last scattering surface of the cosmic microwave background (CMB) to explain the cold spot. The late integrated Sachs-Wolfe effect, already seen statistically for NVSS source counts, can now be seen to operate on a single region. To create the magnitude and angular size of the WMAP cold spot requires a ~140 Mpc radius completely empty void at z ≤ 1 along this line of sight. This is far outside the current expectations of the concordance cosmology, and adds to the anomalies seen in the CMB.


The Astrophysical Journal | 1986

Active extragalactic sources - Nearly simultaneous observations from 20 centimeters to 1400 A

R. Landau; B. Golisch; Terry Jay Jones; T. W. Jones; J. A. Pedelty; Lawrence Rudnick; Michael L. Sitko; J. Kenney; Thomas L. Roellig; Erkki Salonen

IRAS, IUE, and ground-based optical, NIR, mm and submm, and radio observations obtained mainly on Apr. 9-23, 1983, are reported for 19 active extragalactic sources and eight control sources. The overall spectra of the compact active sources are shown to be well represented by continuous-curvature functions such as parabolas. The spectra are found to be consistent with models involving continuous particle injection (with synchrotron losses) or first-order Fermi acceleration (with escape and synchrotron losses), but not with models using relativistic Maxwellian electron distributions.


The Astrophysical Journal | 2001

Chandra Detection of the Forward and Reverse Shocks in Cassiopeia A

E. V. Gotthelf; Barron Koralesky; Lawrence Rudnick; T. W. Jones; Una Hwang; R. Petre

We report the localization of the forward and reverse shock fronts in the young supernova remnant Cassiopeia A using X-ray data obtained with the Chandra X-Ray Observatory. High-resolution X-ray maps resolve a previously unseen X-ray feature encompassing the extremity of the remnant. This feature consists of thin, tangential wisps of emission bordering the outer edge of the thermal X-ray and radio remnant, forming a circular rim, ~27 in radius. Radio images show a sharp rise in brightness at this X-ray rim along with a large jump in the synchrotron polarization angle. These characteristics suggest that these wisps are the previously unresolved signature of the forward, or outer, shock. Similarly, we identify the sharp rise in emissivity of the bright shell for both the radio and X-ray line emission associated with the reverse shock. The derived ratio of the averaged forward and reverse shock radii of ~3?:?2 constrains the remnant to have swept up roughly the same amount of mass as was ejected; this suggests that Cas A is just entering the Sedov phase. Comparison of the X-ray spectra from the two shock regions shows that the equivalent widths of prominent emission lines are significantly lower exterior to the bright shell, as expected if they are respectively identified with the shocked circumstellar material and shocked ejecta. Furthermore, the spectrum of the outer rim itself is dominated by power-law emission, likely the counterpart of the nonthermal component previously seen at energies above ~10 keV.


Monthly Notices of the Royal Astronomical Society | 2011

Diffuse radio emission in/around the Coma cluster: beyond simple accretion

Shea Brown; Lawrence Rudnick

We report on new 1.41-GHz Green Bank Telescope (GBT) and 352-MHz Westerbork Synthesis Radio Telescope observations of the Coma cluster and its environs. At 1.41 GHz, we tentatively detect an extension to the Coma cluster radio relic source 1253+275 which makes its total extent ∼2 Mpc. This extended relic is linearly polarized as seen in our GBT data, the NRAO VLA Sky Survey, and archival images, strengthening a shock interpretation. The extended relic borders a previously undetected ‘wall’ of galaxies in the infall region of the Coma cluster. We suggest that the radio relic is an infall shock, as opposed to the outgoing merger shocks believed responsible for other radio relics. We also find a sharp edge, or ‘front’, on the western side of the 352-MHz radio halo. This front is coincident with a similar discontinuity in the X-ray surface brightness and temperature in its southern half, suggesting a primary shock-acceleration origin for the local synchrotron emitting electrons. The northern half of the synchrotron front is less well correlated with the X-ray properties, perhaps due to projection effects. We confirm the global pixel-to-pixel power-law correlation between the 352-MHz radio brightness and X-ray brightness with a slope that is inconsistent with predictions of either primary shock acceleration or secondary production of relativistic electrons in giant radio haloes, but is allowable in the framework of the turbulent re-acceleration of relic plasma. The failure of these first-order models and the need for a more comprehensive view of the intracluster medium energization are also highlighted by the very different shapes of the diffuse radio and X-ray emission. We note the puzzling correspondence between the shape of the brighter regions of the radio halo and the surface mass density derived from weak lensing.


Monthly Notices of the Royal Astronomical Society | 2011

Diffuse radio emission in/around the Coma cluster

Shea Brown; Lawrence Rudnick

We report on new 1.41-GHz Green Bank Telescope (GBT) and 352-MHz Westerbork Synthesis Radio Telescope observations of the Coma cluster and its environs. At 1.41 GHz, we tentatively detect an extension to the Coma cluster radio relic source 1253+275 which makes its total extent ∼2 Mpc. This extended relic is linearly polarized as seen in our GBT data, the NRAO VLA Sky Survey, and archival images, strengthening a shock interpretation. The extended relic borders a previously undetected ‘wall’ of galaxies in the infall region of the Coma cluster. We suggest that the radio relic is an infall shock, as opposed to the outgoing merger shocks believed responsible for other radio relics. We also find a sharp edge, or ‘front’, on the western side of the 352-MHz radio halo. This front is coincident with a similar discontinuity in the X-ray surface brightness and temperature in its southern half, suggesting a primary shock-acceleration origin for the local synchrotron emitting electrons. The northern half of the synchrotron front is less well correlated with the X-ray properties, perhaps due to projection effects. We confirm the global pixel-to-pixel power-law correlation between the 352-MHz radio brightness and X-ray brightness with a slope that is inconsistent with predictions of either primary shock acceleration or secondary production of relativistic electrons in giant radio haloes, but is allowable in the framework of the turbulent re-acceleration of relic plasma. The failure of these first-order models and the need for a more comprehensive view of the intracluster medium energization are also highlighted by the very different shapes of the diffuse radio and X-ray emission. We note the puzzling correspondence between the shape of the brighter regions of the radio halo and the surface mass density derived from weak lensing.


Monthly Notices of the Royal Astronomical Society | 2009

Cassiopeia A: dust factory revealed via submillimetre polarimetry

Loretta Dunne; Steve Maddox; R. J. Ivison; Lawrence Rudnick; Tracey Ann Delaney; Brenda C. Matthews; C. M. Crowe; Haley Louise Gomez; Stephen Anthony Eales; Simon Dye

If Type II supernovae – the evolutionary end points of short-lived, massive stars – produce a significant quantity of dust (>0.1 M⊙) then they can explain the rest-frame far-infrared emission seen in galaxies and quasars in the first Gyr of the Universe. Submillimetre (submm) observations of the Galactic supernova remnant, Cas A, provided the first observational evidence for the formation of significant quantities of dust in Type II supernovae. In this paper, we present new data which show that the submm emission from Cas A is polarized at a level significantly higher than that of its synchrotron emission. The orientation is consistent with that of the magnetic field in Cas A, implying that the polarized submm emission is associated with the remnant. No known mechanism would vary the synchrotron polarization in this way and so we attribute the excess polarized submm flux to cold dust within the remnant, providing fresh evidence that cosmic dust can form rapidly. This is supported by the presence of both polarized and unpolarized dust emission in the north of the remnant where there is no contamination from foreground molecular clouds. The inferred dust polarization fraction is unprecedented (fpol∼ 30 per cent) which, coupled with the brief time-scale available for grain alignment (<300 yr), suggests that supernova dust differs from that seen in other Galactic sources (where fpol= 2−7 per cent) or that a highly efficient grain alignment process must operate in the environment of a supernova remnant.


The Astronomical Journal | 2006

Spitzer Space Telescope Infrared Imaging and Spectroscopy of the Crab Nebula

Tea Temim; Robert D. Gehrz; Charles E. Woodward; Thomas L. Roellig; Nathan Smith; Lawrence Rudnick; Elisha F. Polomski; Kris Davidson; Lunming Yuen; Takashi Onaka

We present 3.6, 4.5, 5.8, 8.0, 24, and 70 μm images of the Crab Nebula obtained with the Spitzer Space Telescope IRAC and MIPS cameras, low- and high-resolution Spitzer IRS spectra of selected positions within the nebula, and a near-infrared ground-based image made in the light of [Fe II] 1.644 μm. The 8.0 μm image, made with a bandpass that includes [Ar II] 7.0 μm, resembles the general morphology of visible Hα and near-IR [Fe II] line emission, while the 3.6 and 4.5 μm images are dominated by continuum synchrotron emission. The 24 and 70 μm images show enhanced emission that may be due to line emission or the presence of a small amount of warm dust in the nebula on the order of less than 1% of a solar mass. The ratio of the 3.6 and 4.5 μm images reveals a spatial variation in the synchrotron power-law index ranging from approximately 0.3 to 0.8 across the nebula. Combining this information with optical and X-ray synchrotron images, we derive a broadband spectrum that reflects the superposition of the flatter spectrum of the jet and torus with the steeper spectrum of the diffuse nebula. We also see suggestions of the expected pileup of relativistic electrons just before the exponential cutoff in the X-ray. The pulsar, and the associated equatorial toroid and polar jet structures seen in Chandra and Hubble Space Telescope images (Hester et al. 2002), can be identified in all of the IRAC images. We present the IR photometry of the pulsar. The forbidden lines identified in the high-resolution IR spectra are all double due to Doppler shifts from the front and back of the expanding nebula and give an expansion velocity of ≈1264 km s-1.


The Astrophysical Journal | 1985

Magnetic field structures in active compact radio sources

T. W. Jones; Lawrence Rudnick; R.L. Fiedler; H. D. Aller; Margo F. Aller; P. E. Hodge

The analysis of simultaneous multifrequency linear polarimetry data between 1.4 GHz and 90 GHz for about 20 active, compact radio sources at six epochs from 1977 December 10 1980 July is presented. In addition, monthly 8 Ghz polarization data on the same sources were examined. The general polarization characteristics of these sources can be well described in terms of magnetic fields which are largely turbulent and slightly anisotropic. The magnetic field symmetry axes are generally aligned with the source structural axes on the milli-arcsecond scale (OJ 287 is a notable exception.) Monte Carlo calculations indicate that observed polarization variations and in particular rotator polarization events can be produced in this model as a consequence of random walks generated through evolution of the turbulent magnetic field. 43 references.

Collaboration


Dive into the Lawrence Rudnick's collaboration.

Top Co-Authors

Avatar

Tracey Ann Delaney

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

T. W. Jones

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Frazer N. Owen

National Radio Astronomy Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William T. Reach

Universities Space Research Association

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeonghee Rho

Search for extraterrestrial intelligence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martha C. Anderson

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge