Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lawrence S. Kegeles is active.

Publication


Featured researches published by Lawrence S. Kegeles.


Biological Psychiatry | 1999

Increased dopamine transmission in schizophrenia: relationship to illness phases.

Marc Laruelle; Anissa Abi-Dargham; Roberto Gil; Lawrence S. Kegeles; Robert B. Innis

BACKGROUND Abnormalities of dopamine function in schizophrenia are suggested by the common antidopaminergic properties of antipsychotic medications. However, direct evidence of a hyperdopaminergic state in schizophrenia has been difficult to demonstrate, given the difficulty to measure dopamine transmission in the living human brain. Such evidence has recently emerged. Three studies reported an increase in dopamine transmission following acute amphetamine challenge in patients with schizophrenia compared to matched healthy control subjects, thus demonstrating a dysregulation of dopamine in schizophrenia. In all studies, a large variance was observed within the schizophrenic group in the magnitude of this finding, and clinical predictors of this effect could not be identified. METHODS In this paper, we combined previously published and newly acquired data to obtain sufficient power to address this question. RESULTS The most important findings derived from this extended data set are: 1) dysregulation of dopamine function revealed by the amphetamine challenge is present at onset of illness and in patients never previously exposed to neuroleptic medications; 2) this dysregulation was observed in patients experiencing an episode of illness exacerbation, but not in patients studied during a remission phase. CONCLUSIONS A hyperdopaminergic state is present in schizophrenia during the initial episode and subsequent relapses, but not in periods of remission. This finding has important consequences for the development of new treatment strategies for the remission phase.


Journal of Cerebral Blood Flow and Metabolism | 2003

Imaging Human Mesolimbic Dopamine Transmission with Positron Emission Tomography. Part II: Amphetamine-Induced Dopamine Release in the Functional Subdivisions of the Striatum

Diana Martinez; Mark Slifstein; Allegra Broft; Osama Mawlawi; Dah Ren Hwang; Yiyun Huang; Thomas B. Cooper; Lawrence S. Kegeles; Eric Zarahn; Anissa Abi-Dargham; Suzanne N. Haber; Marc Laruelle

The human striatum is functionally organized into limbic, associative, and sensorimotor subdivisions, which process information related to emotional, cognitive, and motor function. Dopamine projections ascending from the midbrain provide important modulatory input to these striatal subregions. The aim of this study was to compare activation of dopamine D2 receptors after amphetamine administration in the functional subdivisions of the human striatum. D2 receptor availability (V3″) was measured with positron emission tomography and [11C]raclopride in 14 healthy volunteers under control conditions and after the intravenous administration of amphetamine (0.3 mg/kg). For each condition, [11C]raclopride was administered as a priming bolus followed by constant infusion, and measurements of D2 receptor availability were obtained under sustained binding equilibrium conditions. Amphetamine induced a significantly larger reduction in D2 receptor availability (ΔV3″) in limbic (ventral striatum, −15.3 ± 11.8%) and sensorimotor (postcommissural putamen, −16.1 ± 9.6%) regions compared with associative regions (caudate and precommissural putamen, −8.1 ± 7.2%). Results of this region-of-interest analysis were confirmed by a voxel-based analysis. Correction for the partial volume effect showed even greater differences in ΔV3″ between limbic (−17.8 ± 13.8%), sensorimotor (−16.6 ± 9.9%), and associative regions (−7.5 ± 7.5%). The increase in euphoria reported by subjects after amphetamine was associated with larger ΔV3″ in the limbic and sensorimotor regions, but not in the associative regions. These results show significant differences in the dopamine response to amphetamine between the functional subdivisions of the human striatum. The mechanisms potentially accounting for these regional differences in amphetamine-induced dopamine release within the striatum remain to be elucidated, but may be related to the asymmetrical feed-forward influences mediating the integration of limbic, cognitive, and sensorimotor striatal function via dopamine cell territories in the ventral midbrain.


Annals of the New York Academy of Sciences | 2003

Glutamate, Dopamine, and Schizophrenia

Marc Laruelle; Lawrence S. Kegeles; Anissa Abi-Dargham

Abstract: The fundamental pathological process(es) associated with schizophrenia remain(s) uncertain, but multiple lines of evidence suggest that this condition is associated with (1) excessive stimulation of striatal dopamine (DA) D2 receptors, (2) deficient stimulation of prefrontal DA D1 receptors and, (3) alterations in prefrontal connectivity involving glutamate (GLU) transmission at N‐methyl‐d‐aspartate (NMDA) receptors. This chapter first briefly discusses the current knowledge status for these abnormalities, with emphasis on results derived from clinical molecular imaging studies. The evidence for hyperstimulation of striatal D2 receptors rests on strong pharmacological evidence and has recently received support from brain imaging studies. The hypothesis of deficient prefrontal cortex (PFC) D1 receptor stimulation is almost entirely derived from preclinical studies. Preliminary imaging data compatible with this hypothesis have recently emerged. The NMDA hypofunction hypothesis originates mainly from indirect pharmacological data. The interactions between DA and GLU systems relevant to schizophrenia are then reviewed. Animal and imaging data supporting the general model that the putative DA imbalance in schizophrenia (striatal excess and cortical deficiency) might be secondary to NMDA hypofunction in the PFC and its connections are presented. Equally important are the potential consequences of this DA imbalance for NMDA function in the striatum and the cortex, which are subsequently discussed. In conclusion, it is proposed that schizophrenia is associated with strongly interconnected abnormalities of GLU and DA transmission: NMDA hypofunction in the PFC and its connections might generate a pattern of dysregulation of DA systems that, in turn, further weakens NMDA‐mediated connectivity and plasticity.


Archives of General Psychiatry | 2010

Increased synaptic dopamine function in associative regions of the striatum in schizophrenia.

Lawrence S. Kegeles; Anissa Abi-Dargham; W. Gordon Frankle; Roberto Gil; Thomas B. Cooper; Mark Slifstein; Dah-Ren Hwang; Yiyun Huang; Suzanne N. Haber; Marc Laruelle

CONTEXT A long-standing version of the dopamine hypothesis of schizophrenia postulates that hyperactivity of dopaminergic transmission at D(2) receptors in the limbic striatum is associated with the illness and that blockade of mesolimbic D(2) receptors is responsible for the antipsychotic action of D(2) receptor antagonists. OBJECTIVE To localize dopaminergic hyperactivity within the striatum in schizophrenia. DESIGN Case-control study. SETTING Inpatient research unit. PARTICIPANTS Eighteen untreated patients with schizophrenia and 18 healthy control subjects matched for age, sex, ethnicity, parental socioeconomic status, cigarette smoking, and weight. MAIN OUTCOME MEASURES Percentage change in dopamine D(2) receptor availability in striatal subregions within each subject measured by positron emission tomography with carbon 11-labeled raclopride before and during pharmacologically induced dopamine depletion. RESULTS In the associative striatum, acute dopamine depletion resulted in a larger increase in D(2) receptor availability in patients with schizophrenia (mean [SD], 15% [7%]) than in control subjects (10% [7%], P = .045), suggesting higher synaptic dopamine concentration. Within the associative striatum, this effect was most pronounced in the precommissural dorsal caudate (15% [8%] in patients vs 9% [8%] in controls, P = .03). No between-group differences were observed in the limbic and sensorimotor striatum. CONCLUSIONS These findings suggest that schizophrenia is associated with elevated dopamine function in associative regions of the striatum. Because the precommissural dorsal caudate processes information from the dorsolateral prefrontal cortex, this observation also suggests that elevated subcortical dopamine function might adversely affect performance of the dorsolateral prefrontal cortex in schizophrenia. On the other hand, the absence of a group difference in the limbic striatum brings into question the therapeutic relevance of the mesolimbic selectivity of second-generation antipsychotic drugs.


Biological Psychiatry | 2000

Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia

Lawrence S. Kegeles; Anissa Abi-Dargham; Yolanda Zea-Ponce; Janine Rodenhiser-Hill; J. John Mann; Ronald L. Van Heertum; Thomas B. Cooper; Arvid Carlsson; Marc Laruelle

BACKGROUND Recent brain imaging studies have indicated that schizophrenia is associated with increased amphetamine-induced dopamine release in the striatum. It has long been hypothesized that dysregulation of subcortical dopamine systems in schizophrenia might result from a failure of the prefrontal cortex (PFC) to adequately control subcortical dopaminergic function. The activity of midbrain dopaminergic neurons is regulated, in part, by glutamatergic projections from the PFC acting via glutamatergic N-methyl-D-aspartate (NMDA) receptors. The goal of this study was to test the hypothesis that a pharmacologically induced disruption of NMDA transmission leads to an increase in amphetamine-induced dopamine release in humans. METHODS In eight healthy volunteers, we compared striatal amphetamine-induced (0.25 mg/kg) dopamine release under control conditions and under sustained disruption of NMDA transmission induced by infusion of the noncompetitive NMDA antagonist ketamine (0.2 mg/kg intravenous bolus followed by 0.4 mg/kg/hour intravenous infusion for 4 hours). Amphetamine-induced dopamine release was determined with single photon emission computed tomography, as the reduction in the binding potential (BP) of the radiolabeled D(2) receptor antagonist [(123)I]IBZM. RESULTS Ketamine significantly enhanced the amphetamine-induced decrease in [(123)I]IBZM BP, from -5.5% +/- 3.5% under control conditions to -12. 8% +/- 8.8% under ketamine pretreatment (repeated-measures analysis of variance, p =.023). CONCLUSIONS The increase in amphetamine-induced dopamine release induced by ketamine (greater than twofold) was comparable in magnitude to the exaggerated response seen in patients with schizophrenia. These data are consistent with the hypothesis that the alteration of dopamine release revealed by amphetamine challenge in schizophrenia results from a disruption of glutamatergic neuronal systems regulating dopaminergic cell activity.


Archives of General Psychiatry | 2012

Elevated prefrontal cortex γ-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy.

Lawrence S. Kegeles; Xiangling Mao; Arielle D. Stanford; Ragy R. Girgis; Najate Ojeil; Xiaoyan Xu; Roberto Gil; Mark Slifstein; Anissa Abi-Dargham; Sarah H. Lisanby; Dikoma C. Shungu

CONTEXT Postmortem studies have found evidence of γ-aminobutyric acid (GABA) deficits in fast-spiking, parvalbumin-positive interneurons in the prefrontal cortex in schizophrenia. Magnetic resonance spectroscopy studies in unmedicated patients have reported glutamine or glutamate-glutamine (Glx) elevations in this region. Abnormalities in these transmitters are thought to play a role in cognitive impairments in the illness. OBJECTIVE To measure GABA and Glx levels in vivo in 2 prefrontal brain regions in unmedicated and medicated patients with schizophrenia and healthy controls. DESIGN Case-control study. SETTING Inpatient psychiatric research unit and associated outpatient clinic. PARTICIPANTS Sixteen unmedicated patients with schizophrenia, 16 medicated patients, and 22 healthy controls matched for age, sex, ethnicity, parental socioeconomic status, and cigarette smoking. METHODS Proton magnetic resonance spectroscopy with a 3-T system and the J-edited spin-echo difference method. The GABA and Glx levels were measured in the dorsolateral and medial prefrontal cortex and normalized to the simultaneously acquired water signal. Working memory performance was assessed in all subjects. MAIN OUTCOME MEASURES The GABA and Glx concentrations determined by proton magnetic resonance spectroscopy. RESULTS In the medial prefrontal cortex region, 30% elevations were found in GABA (P = .02) and Glx (P = .03) levels in unmedicated patients compared with controls. There were no alterations in the medicated patients or in either group in the dorsolateral prefrontal cortex. Both regions showed correlations between GABA and Glx levels in patients and controls. No correlations with working memory performance were found. CONCLUSIONS To our knowledge, this study presents the first GABA concentration measurements in unmedicated patients with schizophrenia, who showed elevations in both GABA and Glx levels in the medial prefrontal cortex but not the dorsolateral prefrontal cortex. Medicated patients did not show these elevations, suggesting possible normalization of levels with antipsychotic medication. The Glx elevations agree with prior magnetic resonance spectroscopy literature, but GABA elevations were unexpected and suggest possible involvement of classes of interneurons not found to show impairments in postmortem studies.


Neuropsychopharmacology | 2001

The variable number of tandem repeats polymorphism of the dopamine transporter gene is not associated with significant change in dopamine transporter phenotype in humans.

Diana Martinez; Joel Gelernter; Anissa Abi-Dargham; Christopher H. van Dyck; Lawrence S. Kegeles; Robert B. Innis; Marc Laruelle

A 40 base polymorphism of a variable number of tandem repeats (VNTR) has been described in the 3′ untranslated region of the gene (SLC6A3) coding for the dopamine transporter (DAT). Despite being located in the untranslated region of the gene, this polymorphism has been associated with clinical phenotypes associated with dysregulation of dopamine transmission, such as attention deficit hyperactivity disorder and cocaine-induced paranoia. To examine the neurochemical phenotype associated with this polymorphism, we compared amphetamine-induced dopamine release (measured as displacement of the radiotracer [123I]IBZM) and DAT expression (measured with [123I;[beta;-CIT) in the striatum with Single Photon Computerized Emission Tomography (SPECT). Our sample included 59 subjects, 31 healthy controls and 29 patients with schizophrenia. No significant association was found between VNTR polymorphism and amphetamine-induced dopamine release or DAT density in the total sample, nor when each diagnostic group was considered separately. Thus, we did not replicate the findings of two previous studies, which had suggested that the 9 repeat allele was associated with either an increased or decreased DAT expression, albeit in different patient populations.


Biological Psychiatry | 2009

Baseline and amphetamine-stimulated dopamine activity are related in drug-naïve schizophrenic subjects.

Anissa Abi-Dargham; Elsmarieke van de Giessen; Mark Slifstein; Lawrence S. Kegeles; Marc Laruelle

BACKGROUND Previous studies demonstrated increased striatal dopamine (DA) release after amphetamine challenge and increased striatal baseline occupancy of D2 receptors in patients with schizophrenia compared with control subjects. We report here on the relationship between these two aspects of DA release in drug-naïve patients with schizophrenia (SCZ) and matched healthy control subjects (HC). METHODS Six drug-naïve SCZ and eight HC underwent single-photon emission computed tomography (SPECT) scans after bolus followed by constant infusion of (S)-(-)-3-[123I]iodo-2-hydroxy-6-methoxy-N-[(1-ethyl-2-pyrrolidinyl)methyl]benzamide ([123I]IBZM) under three conditions to determine the equilibrium specific to non-displaceable binding potential (BP(ND)) for striatal D2 at baseline, after amphetamine administration and after DA depletion. RESULTS Amphetamine induced decrease in BP(ND) was positively correlated with BP(ND) increase after DA depletion in SCZ (p = .02) but not in HC (p = .44). Additionally, both were significantly increased. CONCLUSIONS In drug-naïve patients with schizophrenia but not in control subjects, stimulated and baseline DA release are both increased and positively correlated. At the neuronal level this association suggests that capacity for storage in presynaptic terminals, measured with the amphetamine paradigm, and baseline intrasynaptic DA release, measured with the alpha-methyl-para-tyrosine (alpha MPT) paradigm, are associated in schizophrenia, both consistent with increased midbrain DA cells activity.


Molecular Psychiatry | 2014

Imaging glutamate in schizophrenia: review of findings and implications for drug discovery

E M P Poels; Lawrence S. Kegeles; J T Kantrowitz; Mark Slifstein; D C Javitt; Jeffrey A. Lieberman; Anissa Abi-Dargham; Ragy R. Girgis

Currently, all treatments for schizophrenia (SCZ) function primarily by blocking D2-type dopamine receptors. Given the limitations of these medications, substantial efforts have been made to identify alternative neurochemical targets for treatment development in SCZ. One such target is brain glutamate. The objective of this article is to review and synthesize the proton magnetic resonance spectroscopy (1H MRS) and positron emission tomography (PET)/single-photon emission computed tomography (SPECT) investigations that have examined glutamatergic indices in SCZ, including those of modulatory compounds such as glutathione (GSH) and glycine, as well as data from ketamine challenge studies. The reviewed 1H MRS and PET/SPECT studies support the theory of hypofunction of the N-methyl-D-aspartate receptor (NMDAR) in SCZ, as well as the convergence between the dopamine and glutamate models of SCZ. We also review several advances in MRS and PET technologies that have opened the door for new opportunities to investigate the glutamate system in SCZ and discuss some ways in which these imaging tools can be used to facilitate a greater understanding of the glutamate system in SCZ and the successful and efficient development of new glutamate-based treatments for SCZ.


Synapse | 1999

PET studies of binding competition between endogenous dopamine and the D1 radiotracer [11C]NNC 756

Anissa Abi-Dargham; Norman Simpson; Lawrence S. Kegeles; Ramin V. Parsey; Dah-Ren Hwang; Satish Anjilvel; Yolanda Zea-Ponce; Ilise Lombardo; Ronald L. Van Heertum; J. John Mann; Christian Foged; Christer Halldin; Marc Laruelle

NNC 756 ((+)‐8‐chloro‐5‐(2,3‐dihydrobenzofuran‐7‐yl)‐7‐hydroxy‐3‐methyl‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepine) is a new high affinity dopamine (DA) D1 receptor antagonist. Labeled with C‐11, it has been used as a PET radiotracer to visualize D1 receptors both in striatal and extrastriatal areas, such as the prefrontal cortex. The goal of this study was to evaluate several methods for derivation of D1 receptor binding potential (BP) with [11C]NNC 756 in baboons, and to use these methods to assess the vulnerability of [11C]NNC 756 binding to competition by endogenous DA. A three‐compartment model provided a good fit to PET data acquired following a single bolus injection. BP values obtained with this analysis were in good agreement with values derived from in vitro studies. BP values measured following injection of the potent DA releaser amphetamine (1 mg/kg, n = 2) were similar to values measured under control conditions. Kinetic parameters derived from single bolus experiments were used to design a bolus plus continuous infusion administration protocol aimed at achieving a state of sustained binding equilibrium. Injection of amphetamine during sustained equilibrium did not affect [11C]NNC 756 binding. Similar results were observed with another D1 radiotracer, [11C]SCH 23390. Doses of amphetamine used in this study are known to reduce by 20–40% the binding potential of several D2 receptors radiotracers. Therefore, the absence of displacement of [11C]NNC 756 by an endogenous DA surge may indicate important differences between D1 and D2 receptors in vivo, such as differences in proportion of high affinity states not occupied by DA at baseline. These findings may also imply that a simple binding competition model is inadequate to account for the effects of manipulation of endogenous DA levels on the in vivo binding of radiolabeled antagonists. Synapse 32:93–109, 1999.

Collaboration


Dive into the Lawrence S. Kegeles's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Slifstein

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge