Laxmikant S. Deshpande
Virginia Commonwealth University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laxmikant S. Deshpande.
Journal of Pharmacology and Experimental Therapeutics | 2006
Robert E. Blair; Laxmikant S. Deshpande; Sompong Sombati; Katherine W. Falenski; Billy R. Martin; Robert J. DeLorenzo
Cannabinoids have been shown to have anticonvulsant properties, but no studies have evaluated the effects of cannabinoids in the hippocampal neuronal culture models of acquired epilepsy (AE) and status epilepticus (SE). This study investigated the anticonvulsant properties of the cannabinoid receptor agonist R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolol[1,2,3 de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone (WIN 55,212-2) in primary hippocampal neuronal culture models of both AE and SE. WIN 55,212-2 produced dose-dependent anticonvulsant effects against both spontaneous recurrent epileptiform discharges (SRED) (EC50 = 0.85 μM) and SE (EC50 = 1.51 μM), with total suppression of seizure activity at 3 μM and of SE activity at 5 μM. The anticonvulsant properties of WIN 55,212-2 in these preparations were both stereospecific and blocked by the cannabinoid type-1 (CB1) receptor antagonist N-(piperidin-1-yl-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamidehydrochloride (SR141716A; 1 μM), showing a CB1 receptor-dependent pathway. The inhibitory effect of WIN 55,212-2 against low Mg2+-induced SE is the first observation in this model of total suppression of SE by a selective pharmacological agent. The clinically used anticonvulsants phenytoin and phenobarbital were not able to abolish low Mg2+-induced SE at concentrations up to 150 μM. The results from this study show CB1 receptor-mediated anticonvulsant effects of the cannabimimetic WIN 55,212-2 against both SRED and low Mg2+-induced SE in primary hippocampal neuronal cultures and show that these in vitro models of AE and SE may represent powerful tools to investigate the molecular mechanisms mediating the effects of cannabinoids on neuronal excitability.
European Journal of Neuroscience | 2008
David A. Sun; Laxmikant S. Deshpande; Sompong Sombati; Anya Baranova; Margaret S. Wilson; Robert J. Hamm; Robert J. DeLorenzo
Traumatic brain injury (TBI) survivors often suffer chronically from significant morbidity associated with cognitive deficits, behavioral difficulties and a post‐traumatic syndrome and thus it is important to understand the pathophysiology of these long‐term plasticity changes after TBI. Calcium (Ca2+) has been implicated in the pathophysiology of TBI‐induced neuronal death and other forms of brain injury including stroke and status epilepticus. However, the potential role of long‐term changes in neuronal Ca2+ dynamics after TBI has not been evaluated. In the present study, we measured basal free intracellular Ca2+ concentration ([Ca2+]i) in acutely isolated CA3 hippocampal neurons from Sprague–Dawley rats at 1, 7 and 30 days after moderate central fluid percussion injury. Basal [Ca2+]i was significantly elevated when measured 1 and 7 days post‐TBI without evidence of neuronal death. Basal [Ca2+]i returned to normal when measured 30 days post‐TBI. In contrast, abnormalities in Ca2+ homeostasis were found for as long as 30 days after TBI. Studies evaluating the mechanisms underlying the altered Ca2+ homeostasis in TBI neurons indicated that necrotic or apoptotic cell death and abnormalities in Ca2+ influx and efflux mechanisms could not account for these changes and suggested that long‐term changes in Ca2+ buffering or Ca2+ sequestration/release mechanisms underlie these changes in Ca2+ homeostasis after TBI. Further elucidation of the mechanisms of altered Ca2+ homeostasis in traumatized, surviving neurons in TBI may offer novel therapeutic interventions that may contribute to the treatment and relief of some of the morbidity associated with TBI.
Neuroscience Letters | 2007
Mohsin Raza; Laxmikant S. Deshpande; Robert E. Blair; Dawn S. Carter; Sompong Sombati; Robert J. DeLorenzo
Aging is associated with increased vulnerability to neurodegenerative conditions such as Parkinsons and Alzheimers disease and greater neuronal deficits after stroke and epilepsy. Emerging studies have implicated increased levels of intracellular calcium ([Ca(2+)](i)) for the neuronal loss associated with aging related disorders. Recent evidence demonstrates increased expression of voltage gated Ca(2+) channel proteins and associated Ca(2+) currents with aging. However, a direct comparison of [Ca(2+)](i) levels and Ca(2+) homeostatic mechanisms in hippocampal neurons acutely isolated from young and mid-age adult animals has not been performed. In this study, Fura-2 was used to determine [Ca(2+)](i) levels in CA1 hippocampal neurons acutely isolated from young (4-5 months) and mid-age (12-16 months) Sprague-Dawley rats. Our data provide the first direct demonstration that mid-age neurons in comparison to young neurons manifest significant elevations in basal [Ca(2+)](i) levels. Upon glutamate stimulation and a subsequent [Ca(2+)](i) load, mid-age neurons took longer to remove the excess [Ca(2+)](i) in comparison to young neurons, providing direct evidence that altered Ca(2+) homeostasis may be present in animals at significantly younger ages than those that are commonly considered aged (> or =24 months). These alterations in Ca(2+) dynamics may render aging neurons more vulnerable to neuronal death following stroke, seizures or head trauma. Elucidating the functionality of Ca(2+) homeostatic mechanisms may offer an understanding of the increased neuronal loss that occurs with aging, and allow for the development of novel therapeutic agents targeted towards decreasing [Ca(2+)](i) levels thereby restoring the systems that maintain normal Ca(2+) homeostasis in aged neurons.
European Journal of Pharmacology | 2008
Laxmikant S. Deshpande; Jeffrey K. Lou; Ali Mian; Robert E. Blair; Sompong Sombati; Elisa Attkisson; Robert J. DeLorenzo
The hippocampus is especially vulnerable to seizure-induced damage and excitotoxic neuronal injury. This study examined the time course of neuronal death in relationship to seizure duration and the pharmacological mechanisms underlying seizure-induced cell death using low magnesium (Mg2+) induced continuous high frequency epileptiform discharges (in vitro status epilepticus) in hippocampal neuronal cultures. Neuronal death was assessed using cell morphology and fluorescein diacetate-propidium iodide staining. Effects of low Mg2+ and various receptor antagonists on spike frequency were assessed using patch clamp electrophysiology. We observed a linear and time-dependent increase in neuronal death with increasing durations of status epilepticus. This cell death was dependent upon extracellular calcium (Ca2+) that entered primarily through the N-methyl-d-aspartate (NMDA) glutamate receptor channel subtype. Neuronal death was significantly decreased by co-incubation with the NMDA receptor antagonists and was also inhibited by reduction of extracellular (Ca2+) during status epilepticus. In contrast, neuronal death from in vitro status epilepticus was not significantly prevented by inhibition of other glutamate receptor subtypes or voltage-gated Ca2+ channels. Interestingly this NMDA-Ca2+ dependent neuronal death was much more gradual in onset compared to cell death from excitotoxic glutamate exposure. The results provide evidence that in vitro status epilepticus results in increased activation of the NMDA-Ca2+ transduction pathway leading to neuronal death in a time-dependent fashion. The results also indicate that there is a significant window of opportunity during the initial time of continuous seizure activity to be able to intervene, protect neurons and decrease the high morbidity and mortality associated with status epilepticus.
Neuroscience Letters | 2008
Nisha Nagarkatti; Laxmikant S. Deshpande; Robert J. DeLorenzo
Epilepsy affects approximately 1% of the population worldwide, and there is a pressing need to develop new anti-epileptic drugs (AEDs) and understand their mechanisms of action. Levetiracetam (LEV) is a novel AED and despite its increasingly widespread clinical use, its mechanism of action is as yet undetermined. Intracellular calcium ([Ca2+]i) regulation by both inositol 1,4,5-triphosphate receptors (IP3R) and ryanodine receptors (RyR) has been implicated in epileptogenesis and the maintenance of epilepsy. To this end, we investigated the effect of LEV on RyR and IP3R activated calcium-induced calcium release (CICR) in hippocampal neuronal cultures. RyR-mediated CICR was stimulated using the well-characterized RyR activator, caffeine. Caffeine (10mM) caused a significant increase in [Ca2+]i in hippocampal neurons. Treatment with LEV (33 microM) prior to stimulation of RyR-mediated CICR by caffeine led to a 61% decrease in the caffeine induced peak height of [Ca2+]i when compared to the control. Bradykinin stimulates IP3R-activated CICR-to test the effect of LEV on IP3R-mediated CICR, bradykinin (1 microM) was used to stimulate cells pre-treated with LEV (100 microM). The data showed that LEV caused a 74% decrease in IP3R-mediated CICR compared to the control. In previous studies we have shown that altered Ca2+ homeostatic mechanisms play a role in seizure activity and the development of spontaneous recurrent epileptiform discharges (SREDs). Elevations in [Ca2+]i mediated by CICR systems have been associated with neurotoxicity, changes in neuronal plasticity, and the development of AE. Thus, the ability of LEV to modulate the two major CICR systems demonstrates an important molecular effect of this agent on a major second messenger system in neurons.
Toxicological Sciences | 2010
Laxmikant S. Deshpande; Dawn S. Carter; Robert E. Blair; Robert J. DeLorenzo
Organophosphate (OP) compounds are among the most lethal chemical weapons ever developed and are irreversible inhibitors of acetylcholinesterase. Exposure to majority of OP produces status epilepticus (SE) and severe cholinergic symptoms that if left untreated are fatal. Survivors of OP intoxication often suffer from irreversible brain damage and chronic neurological disorders. Although pilocarpine has been used to model SE following OP exposure, there is a need to establish a SE model that uses an OP compound in order to realistically mimic both acute and long-term effects of nerve agent intoxication. Here we describe the development of a rat model of OP-induced SE using diisopropylfluorophosphate (DFP). The mortality, behavioral manifestations, and electroencephalogram (EEG) profile for DFP-induced SE (4 mg/kg, sc) were identical to those reported for nerve agents. However, significantly higher survival rates were achieved with an improved dose regimen of DFP and treatment with pralidoxime chloride (25 mg/kg, im), atropine (2 mg/kg, ip), and diazepam (5 mg/kg, ip) making this model ideal to study chronic effects of OP exposure. Further, DFP treatment produced N-methyl-D-aspartate (NMDA) receptor-mediated significant elevation in hippocampal neuronal [Ca(2+)](i) that lasted for weeks after the initial SE. These results provided direct evidence that DFP-induced SE altered Ca(2+) dynamics that could underlie some of the long-term plasticity changes associated with OP toxicity. This model is ideally suited to test effective countermeasures for OP exposure and study molecular mechanisms underlying neurological disorders following OP intoxication.
Neuropharmacology | 2009
Robert E. Blair; Laxmikant S. Deshpande; Sompong Sombati; Maurice R. Elphick; Billy R. Martin; Robert J. DeLorenzo
Cannabinoids have been shown to cause CB1-receptor-dependent anticonvulsant activity in both in vivo and in vitro models of status epilepticus (SE) and acquired epilepsy (AE). It has been further demonstrated in these models that the endocannabinoid system functions in a tonic manner to suppress seizure discharges through a CB1-receptor-dependent pathway. Although acute cannabinoid treatment has anticonvulsant activity, little is known concerning the effects of prolonged exposure to CB1 agonists and development of tolerance on the epileptic phenotype. This study was carried out to evaluate the effects of prolonged exposure to the CB1 agonist WIN55,212-2 on seizure activity in a hippocampal neuronal culture model of low-Mg(2+) induced spontaneous recurrent epileptiform discharges (SREDs). Following low-Mg(2+) induced SREDs, cultures were returned to maintenance media containing 10, 100 or 1000 nM WIN55,212-2 from 4 to 24 h. Whole-cell current-clamp analysis of WIN55,212-2 treated cultures revealed a concentration-dependent increase in SRED frequency. Immunocytochemical staining revealed that WIN55,212-2 treatment induced a concentration-dependent downregulation of the CB1 receptor in neuronal processes and at both glutamatergic and GABAergic presynaptic terminals. Prolonged exposure to the inactive enantiomer WIN55,212-3 in low-Mg(2+) treated cultures had no effect on the frequency of SREDs or CB1 receptor staining. The results from this study further substantiate a role for a tonic CB1-receptor-dependent endocannabinoid regulation of seizure discharge and suggest that prolonged exposure to cannabinoids results in the development of tolerance to the anticonvulsant effects of cannabinoids and an exacerbation of seizure activity in the epileptic phenotype.
Neuroscience Letters | 2008
Laxmikant S. Deshpande; David A. Sun; Sompong Sombati; Anya Baranova; Margaret S. Wilson; Elisa Attkisson; Robert J. Hamm; Robert J. DeLorenzo
Traumatic brain injury (TBI) survivors often suffer from a post-traumatic syndrome with deficits in learning and memory. Calcium (Ca(2+)) has been implicated in the pathophysiology of TBI-induced neuronal death. However, the role of long-term changes in neuronal Ca(2+) function in surviving neurons and the potential impact on TBI-induced cognitive impairments are less understood. Here we evaluated neuronal death and basal free intracellular Ca(2+) ([Ca(2+)](i)) in acutely isolated rat CA3 hippocampal neurons using the Ca(2+) indicator, Fura-2, at seven and thirty days after moderate central fluid percussion injury. In moderate TBI, cognitive deficits as evaluated by the Morris Water Maze (MWM), occur after injury but resolve after several weeks. Using MWM paradigm we compared alterations in [Ca(2+)](i) and cognitive deficits. Moderate TBI did not cause significant hippocampal neuronal death. However, basal [Ca(2+)](i) was significantly elevated when measured seven days post-TBI. At the same time, these animals exhibited significant cognitive impairment (F(2,25)=3.43, p<0.05). When measured 30 days post-TBI, both basal [Ca(2+)](i) and cognitive functions had returned to normal. Pretreatment with MK-801 blocked this elevation in [Ca(2+)](i) and also prevented MWM deficits. These studies provide evidence for a link between elevated [Ca(2+)](i) and altered cognition. Since no significant neuronal death was observed, the alterations in Ca(2+) homeostasis in the traumatized, but surviving neurons may play a role in the pathophysiology of cognitive deficits that manifest in the acute setting after TBI and represent a novel target for therapeutic intervention following TBI.
Frontiers in Neurology | 2014
Laxmikant S. Deshpande; Robert J. DeLorenzo
Status epilepticus (SE) is a major clinical emergency that is associated with high mortality and morbidity. SE causes significant neuronal injury and survivors are at a greater risk of developing acquired epilepsy and other neurological morbidities, including depression and cognitive deficits. Benzodiazepines and some anticonvulsant agents are drugs of choice for initial SE management. Despite their effectiveness, over 40% of SE cases are refractory to the initial treatment with two or more medications. Thus, there is an unmet need of developing newer anti-SE drugs. Levetiracetam (LEV) is a widely prescribed anti-epileptic drug that has been reported to be used in SE cases, especially in benzodiazepine-resistant SE or where phenytoin cannot be used due to allergic side-effects. Levetiracetam’s non-classical anti-epileptic mechanisms of action, favorable pharmacokinetic profile, general lack of central depressant effects, and lower incidence of drug interactions contribute to its use in SE management. This review will focus on LEV’s unique mechanism of action that makes it a viable candidate for SE treatment.
Neurotoxicology | 2014
Laxmikant S. Deshpande; Dawn S. Carter; Kristin F. Phillips; Robert E. Blair; Robert J. DeLorenzo
Paraoxon (POX) is an active metabolite of organophosphate (OP) pesticide parathion that has been weaponized and used against civilian populations. Exposure to POX produces high mortality. OP poisoning is often associated with chronic neurological disorders. In this study, we optimize a rat survival model of lethal POX exposures in order to mimic both acute and long-term effects of POX intoxication. Male Sprague-Dawley rats injected with POX (4mg/kg, ice-cold PBS, s.c.) produced a rapid cholinergic crisis that evolved into status epilepticus (SE) and death within 6-8min. The EEG profile for POX induced SE was characterized and showed clinical and electrographic seizures with 7-10Hz spike activity. Treatment of 100% lethal POX intoxication with an optimized three drug regimen (atropine, 2mg/kg, i.p., 2-PAM, 25mg/kg, i.m. and diazepam, 5mg/kg, i.p.) promptly stopped SE and reduced acute mortality to 12% and chronic mortality to 18%. This model is ideally suited to test effective countermeasures against lethal POX exposure. Animals that survived the POX SE manifested prolonged elevations in hippocampal [Ca(2+)]i (Ca(2+) plateau) and significant multifocal neuronal injury. POX SE induced Ca(2+) plateau had its origin in Ca(2+) release from intracellular Ca(2+) stores since inhibition of ryanodine/IP3 receptor lowered elevated Ca(2+) levels post SE. POX SE induced neuronal injury and alterations in Ca(2+) dynamics may underlie some of the long term morbidity associated with OP toxicity.