Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laxminarayana R. Devireddy is active.

Publication


Featured researches published by Laxminarayana R. Devireddy.


Cell | 2005

A Cell-Surface Receptor for Lipocalin 24p3 Selectively Mediates Apoptosis and Iron Uptake

Laxminarayana R. Devireddy; Claude Gazin; Xiaochun Zhu; Michael R. Green

The lipocalin mouse 24p3 has been implicated in diverse physiological processes, including apoptosis due to interleukin-3 (IL-3) deprivation and iron transport. Here we report cloning of the 24p3 cell-surface receptor (24p3R). Ectopic 24p3R expression confers on cells the ability to undergo either iron uptake or apoptosis, dependent upon the iron content of the ligand: Iron-loaded 24p3 increases intracellular iron concentration without promoting apoptosis; iron-lacking 24p3 decreases intracellular iron levels, which induces expression of the proapoptotic protein Bim, resulting in apoptosis. Intracellular iron delivery blocks Bim induction and suppresses apoptosis due to 24p3 addition or IL-3 deprivation. We find, unexpectedly, that the BCR-ABL oncoprotein activates expression of 24p3 and represses 24p3R expression, rendering BCR-ABL(+) cells refractory to secreted 24p3. By inhibiting BCR-ABL, imatinib induces 24p3R expression and, consequently, apoptosis. Our results reveal an unanticipated role for intracellular iron regulation in an apoptotic pathway relevant to BCR-ABL-induced myeloproliferative disease and its treatment.


Biochemistry | 2012

Mechanisms of mammalian iron homeostasis

Kostas Pantopoulos; Suheel K. Porwal; Alan M. Tartakoff; Laxminarayana R. Devireddy

Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in the acquisition or distribution of the metal causes anemia, whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways as well as in mechanisms underlying intracellular iron trafficking, an important but less studied area of mammalian iron homeostasis.


Cell | 2010

A Mammalian Siderophore Synthesized by an Enzyme with a Bacterial Homolog Involved in Enterobactin Production

Laxminarayana R. Devireddy; Daniel O. Hart; David H. Goetz; Michael R. Green

Intracellular iron homeostasis is critical for survival and proliferation. Lipocalin 24p3 is an iron-trafficking protein that binds iron through association with a bacterial siderophore, such as enterobactin, or a postulated mammalian siderophore. Here, we show that the iron-binding moiety of the 24p3-associated mammalian siderophore is 2,5-dihydroxybenzoic acid (2,5-DHBA), which is similar to 2,3-DHBA, the iron-binding component of enterobactin. We find that the murine enzyme responsible for 2,5-DHBA synthesis, BDH2, is the homolog of bacterial EntA, which catalyzes 2,3-DHBA production during enterobactin biosynthesis. RNA interference-mediated knockdown of BDH2 results in siderophore depletion. Mammalian cells lacking the siderophore accumulate abnormally high amounts of cytoplasmic iron, resulting in elevated levels of reactive oxygen species, whereas the mitochondria are iron deficient. Siderophore-depleted mammalian cells and zebrafish embryos fail to synthesize heme, an iron-dependent mitochondrial process. Our results reveal features of intracellular iron homeostasis that are conserved from bacteria through humans.


Molecular and Cellular Biology | 2003

Transcriptional program of apoptosis induction following interleukin 2 deprivation: identification of RC3, a calcium/calmodulin binding protein, as a novel proapoptotic factor.

Laxminarayana R. Devireddy; Michael R. Green

ABSTRACT Apoptosis of mature T lymphocytes preserves immune system homeostasis by counteracting transient increases in T-cell number. This process is regulated, at least in part, by the cytokine interleukin 2 (IL-2): T cells deprived of IL-2 undergo apoptosis. The mechanism of apoptosis induction by IL-2 deprivation remains to be determined but is known to require RNA synthesis, implying the existence of transcriptionally activated genes whose products induce cell death. To identify such genes, we have performed expression profiling in IL-2-dependent T cells following cytokine deprivation. Our results reveal an intricate transcriptional program entailing the induction of known proapoptotic factors and the simultaneous repression of known antiapoptotic factors. Surprisingly, one gene whose transcription substantially increased was RC3 (also called neurogranin), which encodes a calmodulin binding protein thought to be a neural-specific factor involved in learning and memory. We show that ectopic expression of RC3 in IL-2-dependent T cells increases the intracellular Ca2+ concentration and induces apoptosis even in the presence of cytokine. Buffering the Ca2+ increase with the cytoplasmic Ca2+ chelator BAPTA-AM [1,2-bis(2-aminophenoxy)ethane-N,N,N1,N-tetraacetic acid] blocks RC3-induced apoptosis, indicating that the rise in intracellular Ca2+ is required for apoptotic death. RC3 mutants unable to bind calmodulin fail to increase intracellular Ca2+ levels and to induce apoptosis. Based upon these results, we propose that IL-2 deprivation raises the level of RC3 and other apoptotic factors, which induce apoptosis by increasing the intracellular Ca2+ concentration.


Journal of Immunology | 2013

Impaired Neutrophil Function in 24p3 Null Mice Contributes to Enhanced Susceptibility to Bacterial Infections

Zhuoming Liu; Robert B. Petersen; Laxminarayana R. Devireddy

Lipocalin 24p3 (24p3) is a neutrophil secondary granule protein. 24p3 is also a siderocalin, which binds several bacterial siderophores. It was therefore proposed that synthesis and secretion of 24p3 by stimulated macrophages or release of 24p3 upon neutrophil degranulation sequesters iron-laden siderophores to attenuate bacterial growth. Accordingly, 24p3-deficient mice are susceptible to bacterial pathogens for which siderophores would normally be chelated by 24p3. Specific granule deficiency (SGD) is a rare congenital disorder characterized by complete absence of proteins in secondary granules. Neutrophils from SGD patients, who are prone to bacterial infections, lack normal functions, but the potential role of 24p3 in neutrophil dysfunction in SGD is not known. In this study, we show that neutrophils from mice genetically deficient for lipocalin 24p3 (24p3−/−) are defective in many neutrophil functions. Specifically, neutrophils in 24p3−/− mice do not extravasate to sites of infection and are defective for chemotaxis. A transcriptome analysis revealed that genes that control cytoskeletal reorganization are selectively suppressed in 24p3−/− neutrophils. Additionally, small regulatory RNAs (microRNAs) that control upstream regulators of cytoskeletal proteins are also increased in 24p3−/− neutrophils. Further, 24p3−/− neutrophils failed to phagocytose bacteria, which may account for the enhanced sensitivity of 24p3−/− mice to both intracellular (Listeria monocytogenes) and extracellular (Candida albicans and Staphylococcus aureus) pathogens. Listeria does not secrete siderophores, and additionally, the siderophore secreted by Candida is not sequestered by 24p3. Therefore, the heightened sensitivity of 24p3−/− mice to these pathogens is not due to sequestration of siderophores limiting iron availability, but is a consequence of impaired neutrophil function.


Journal of Experimental Medicine | 2014

Regulation of mammalian siderophore 2,5-DHBA in the innate immune response to infection

Zhuoming Liu; Scott M. Reba; Wei Dong Chen; Suheel K. Porwal; W. Henry Boom; Robert B. Petersen; Roxana E. Rojas; Rajesh Viswanathan; Laxminarayana R. Devireddy

Bacteria can utilize a mammalian host siderophore to usurp host iron; however, the host can respond by down-regulating siderophore expression and up-regulating expression of an inhibitory siderophore-binding protein.


Journal of NeuroVirology | 2003

Cloning and Initial Characterization of an Alternatively Spliced Transcript Encoded by the Bovine Herpes Virus 1 Latency-Related Gene

Laxminarayana R. Devireddy; Yange Zhang; Clinton Jones

Bovine herpesvirus 1 (BHV-1) establishes latency in trigeminal ganglionic sensory neurons of infected cattle. The latency-related (LR) RNA is the only abundantly expressed viral transcript in sensory neurons of latently infected calves. Wild-type expression of LR gene products is required for the latency-reactivation cycle in calves. LR RNA is alternatively spliced in trigeminal ganglia (TG) after infection of calves, suggesting that these alternatively spliced transcripts encode novel factors that regulate specific steps during latency. To begin testing whether these alternatively spliced transcripts have novel functions, the authors cloned a full-length cDNA identified in TG of calves at 7 days post infection (dpi) and compared the functions of this cDNA to the intact LR gene. As a result of splicing, the 7 dpi cDNA contains a novel open reading (ORF) comprised of OFR-2 fused to ORF-1. Overexpression of the 7 dpi cDNA inhibited the BHV-1 immediate-early transcription unit 1 (IEtu1) promoter and the herpes simplex virus type 1ICP0 promoter. Conversely, the 7 dpi cDNA stimulated the LR promoter in transiently transfected cells. A plasmid containing the LR gene had little effect on IEtu1 or LR promoter activity, indicating that the 7 dpi cDNA has novel functions.


Journal of Biological Chemistry | 2011

Multiple apoptotic defects in hematopoietic cells from mice lacking lipocalin 24P3

Zhuoming Liu; Amy H. Yang; Zhengqi Wang; Kevin D. Bunting; Gangarao Davuluri; Michael R. Green; Laxminarayana R. Devireddy

The lipocalin mouse 24p3 has been implicated in diverse physiological processes, including apoptosis, iron trafficking, development and innate immunity. Studies from our laboratory as well as others demonstrated the proapoptotic activity of 24p3 in a variety of cultured models. However, a general role for the lipocalin 24p3 in the hematopoietic system has not been tested in vivo. To study the role of 24p3, we derived 24p3 null mice and back-crossed them onto C57BL/6 and 129/SVE backgrounds. Homozygous 24p3−/− mice developed a progressive accumulation of lymphoid, myeloid, and erythroid cells, which was not due to enhanced hematopoiesis because competitive repopulation and recovery from myelosuppression were the same as for wild type. Instead, apoptotic defects were unique to many mature hematopoietic cell types, including neutrophils, cytokine-dependent mast cells, thymocytes, and erythroid cells. Thymocytes isolated from 24p3 null mice also displayed resistance to apoptosis-induced by dexamethasone. Bim response to various apoptotic stimuli was attenuated in 24p3−/− cells, thus explaining their resistance to the ensuing cell death. The results of these studies, in conjunction with those of previous studies, reveal 24p3 as a regulator of the hematopoietic compartment with important roles in normal physiology and disease progression. Interestingly, these functions are limited to relatively mature blood cell compartments.


Journal of Biological Chemistry | 2000

Olf-1, a Neuron-specific Transcription Factor, Can Activate the Herpes Simplex Virus Type 1-Infected Cell Protein 0 Promoter

Laxminarayana R. Devireddy; Clinton Jones

Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in sensory neurons of infected individuals. Infected cell protein 0 (ICP0) is important for productive infection and reactivation from latency. Thus, activation of ICP0 expression in neurons is likely to be important for reactivation from latency. In a mouse neuroblastoma cell line, ICP0 promoter activity is high compared with other strong viral promoters. In contrast, promoter activity is low in non-neuronal cells. DNase I footprinting assays indicated that three distinct motifs in the ICP0 promoter are bound by nuclear factors. One of these motifs contains a binding site for a novel helix-loop-helix olfactory neuron-specific transcription factor (Olf-1). Gel shift assays and supershift assays using an Olf-1-specific antibody demonstrated that mouse neuroblastoma cells express Olf-1, which is bound to the Olf-1-like site in the ICP0 promoter. Deletion of the putative Olf-1 motif reduced ICP0 promoter activity more than 5-fold in mouse neuroblastoma cells and preventedtrans-activation by an Olf-1 expression vector. We hypothesize that the Olf-1-binding site activates ICP0 promoter activity in neurons during reactivation from latency.


Molecular and Cellular Biology | 2014

Endogenous Siderophore 2,5-Dihydroxybenzoic Acid Deficiency Promotes Anemia and Splenic Iron Overload in Mice

Zhuoming Liu; Alieta Ciocea; Laxminarayana R. Devireddy

ABSTRACT Eukaryotes produce a siderophore-like molecule via a remarkably conserved biosynthetic pathway. 3-OH butyrate dehydrogenase (BDH2), a member of the short-chain dehydrogenase (SDR) family of reductases, catalyzes a rate-limiting step in the biogenesis of the mammalian siderophore 2,5-dihydroxybenzoic acid (2,5-DHBA). Depletion of the mammalian siderophore by inhibiting expression of bdh2 results in abnormal accumulation of intracellular iron and mitochondrial iron deficiency in cultured mammalian cells, as well as in yeast cells and zebrafish embryos We disrupted murine bdh2 by homologous recombination to analyze the effect of bdh2 deletion on erythropoiesis and iron metabolism. bdh2 null mice developed microcytic anemia and tissue iron overload, especially in the spleen. Exogenous supplementation with 2,5-DHBA alleviates splenic iron overload in bdh2 null mice. Additionally, bdh2 null mice exhibit reduced serum iron. Although BDH2 has been proposed to oxidize ketone bodies, we found that BDH2 deficiency did not alter ketone body metabolism in vivo. In sum, our findings demonstrate a key role for BDH2 in erythropoiesis.

Collaboration


Dive into the Laxminarayana R. Devireddy's collaboration.

Top Co-Authors

Avatar

Michael R. Green

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Zhuoming Liu

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Clinton Jones

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Suheel K. Porwal

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Alieta Ciocea

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Claude Gazin

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Gangarao Davuluri

Cleveland Clinic Lerner College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kevin D. Bunting

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Rajesh Viswanathan

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Robert B. Petersen

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge