Layne Carter
Marshall Space Flight Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Layne Carter.
international conference on evolvable systems | 2005
Layne Carter; David Tabb; James D. Tatara; Richard K. Mason
The Water Processor Assembly (WPA) for use on the International Space Station (ISS) includes various technologies for the treatment of waste water. These technologies include filtration, ion exchange, adsorption, catalytic oxidation, and iodination. The WPA hardware implementing portions of these technologies, including the Particulate Filter, Multifiltration Bed, Ion Exchange Bed, and Microbial Check Valve, was recently qualified for chemical performance at the Marshall Space Flight Center. Waste water representing the quality of that produced on the ISS was generated by test subjects and processed by the WPA. Water quality analysis and instrumentation data was acquired throughout the test to monitor hardware performance. This paper documents operation of the test and the assessment of the hardware performance.
international conference on evolvable systems | 1991
Clifford D. Jolly; Leonard J. Schussel; Layne Carter
Fixed-bed reactors have been used at NASA-Marshall to purify wastewater generated by an end-use equipment facility, on the basis of a combination of multifiltration unibeds and enzyme unibeds. The enzyme beds were found to effectively remove such targeted organics as urea, alcohols, and aldehydes, down to levels lying below detection limits. The enzyme beds were also found to remove organic contaminants not specifically targeted.
international conference on evolvable systems | 2007
Kristin Tomes; David A. Long; Layne Carter; Michael Flynn
The Vapor Phase Catalytic Ammonia. Removal (VPCAR) technology has been previously discussed as a viable option for. the Exploration Water Recovery System. This technology integrates a phase change process with catalytic oxidation in the vapor phase to produce potable water from exploration mission wastewaters. A developmental prototype VPCAR was designed, built and tested under funding provided by a National Research. Announcement (NRA) project. The core technology, a Wiped Film Rotating Device (WFRD) was provided by Water Reuse Technologies under the NRA, whereas Hamilton Sundstrand Space Systems International performed the hardware integration and acceptance test. of the system. Personnel at the-Ames Research Center performed initial systems test of the VPCAR using ersatz solutions. To assess the viability of this hardware for Exploration. Life Support (ELS) applications, the hardware has been modified and tested at the MSFC ECLS Test facility. This paper summarizes the hardware modifications and test results and provides an assessment of this technology for the ELS application.
Physics of Fluids | 2004
Boyun Guo; Donald W. Holder; Layne Carter
Predicting distribution of flowing fluids in confined porous media under microgravity conditions is vitally important for optimal design of packed bubble column reactors in space stations. Existing correlations have been found inaccurate when applied to microgravity conditions. On the basis of Darcy’s law for two-phase flow, a simple mathematical model has been developed in this study. Sensitivity analyses with the model indicate that for a given combination of wetting and nonwetting fluid flow rates, fluid holdups are controlled by relative permeabilities. The effect of gravity on fluid holdup is influenced by the absolute permeability of the porous medium. Fluid distribution is affected by the temperature-dependent fluid properties and wall effect.
40th International Conference on Environmental Systems | 2010
Lance Delzeit; Michael Flynn; Layne Carter; David A. Long
Testing of the Wiped-film Rotating-disk (WFRD) evaporator was conducted in support of the Exploration Life Support Distillation Down-Select Test. The WFRD was constructed at NASA Ames Research Center (ARC) and tested at NASA Marshall Space Flight Center (MSFC). The WFRD was delivered to MSFC in September 2009, and testing of solution #1 and solution #2 immediately following. Solution #1 was composed of humidity condensate and urine, including flush water and pretreatment chemicals. Solution #2 was composed of hygiene water, humidity condensate, and urine, including flush water and pretreatment chemicals. During the testing, the operational parameters of the WFRD were recorded and samples of the feed, brine, and product were collected and analyzed. The steady-state results of processing 414L of feed solution #1 and 1283L of feed solution #2 demonstrated that running the WFRD at a brine temperature of 50 C gave an average production rate of 16.7 L/hr. The specific energy consumption was 80.5W-hr/L. Data Analysis shows that the water recovery rates were 94% and 91%, respectively. The total mass of the WFRD as delivered to MSFC was 300 Kg. The volume of the tests stand rack was 1m width x 0.7m depth x 1.9m height or 1.5 cu m of which about half of the total volume is occupied by equipment. Chemical analysis of the distillate showed an average TOC of 20ppm, a pH of 3.5, and a conductivity of 98 mho/cm. The conductivity of the distillate, compared to the feed, decreased by 98.9%., the total ion concentration decreased by 99.6%, the total organics decreased 98.6%, and the metals were at or below detection limits
43rd International Conference on Environmental Systems | 2013
Layne Carter; Elizabeth Bowman; Mark Wilson; Greg Gentry; Tony Rector
The ISS Water Recovery System (WRS) is responsible for providing potable water to the crew, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. The WRS includes the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WPA processes condensate from the cabin air and distillate produced by the UPA. In 2010, an increasing trend in the Total Organic Carbon (TOC) in the potable water was ultimately identified as dimethylsilanediol (DMSD). The increasing trend was ultimately reversed after replacing the WPAs two multifiltration beds. However, the reason for the TOC trend and the subsequent recovery was not understood. A subsequent trend occurred in 2012. This paper summarizes the current understanding of the fate of DMSD in the WPA, how the increasing TOC trend occurred, and the plan for modifying the WPA to prevent recurrence.
42nd International Conference on Environmental Systems | 2012
Elizabeth Bowman; Layne Carter; Mark Wilson; Harold Cole; Nicole Orozco; Doug Snowdon
The ISS Water Processor Assembly (WPA) produces potable water from a waste stream containing humidity condensate and urine distillate. The primary treatment process is achieved in the Multifiltration Bed, which includes adsorbent media and ion exchange resin for the removal of dissolved organic and inorganic contaminants. The first Multifiltration Bed was replaced on ISS in July 2010 after initial indication of inorganic breakthrough. This bed was returned to ground in July 2011 for an engineering investigation. The water resident in the bed was analyzed for various parameters to evaluate adsorbent loading, performance of the ion exchange resin, microbial activity, and generation of leachates from the ion exchange resin. Portions of the adsorbent media and ion exchange resin were sampled and subsequently desorbed to identify the primary contaminants removed at various points in the bed. In addition, an unused Multifiltration Bed was evaluated after two years in storage to assess the generation of leachates during storage. This assessment was performed to evaluate the possibility that these leachates are impacting performance of the Catalytic Reactor located downstream of the Multifiltration Bed. The results of these investigations and implications to the operation of the WPA on ISS are documented in this paper.
43rd International Conference on Environmental Systems | 2013
Elizabeth Bowman; Layne Carter; Joyce Carpenter; Nicole Orozco; Natalee Weir; Mark Wilson
The ISS Water Processor Assembly (WPA) produces potable water from a waste stream containing humidity condensate and urine distillate. The primary treatment process is achieved in the Multifiltration Beds, which include adsorbent media and ion exchange resin for the removal of dissolved organic and inorganic contaminants. Two Multifiltration Beds (MF Beds) were replaced on ISS in July 2010 after initial indication of inorganic breakthrough of the first bed and an increasing Total Organic Carbon (TOC) trend in the product water. The first bed was sampled and analyzed Sept 2011 through March 2012. The second MF Bed was sampled and analyzed June 2012 through August 2012. The water resident in the both beds was analyzed for various parameters to evaluate adsorbent loading, performance of the ion exchange resin, microbial activity, and generation of leachates from the ion exchange resin. Portions of the adsorbent media and ion exchange resin were sampled and subsequently desorbed to identify the primary contaminants removed at various points in the bed in addition to microbial analysis. Analysis of the second bed will be compared to results from the first bed to provide a comprehensive overview of how the Multifiltration Beds function on orbit. New data from the second bed supplements the analysis of the first bed (previously reported) and gives a more complete picture of breakthrough compounds, resin breakdown products, microbial activity, and difficult to remove compounds. The results of these investigations and implications to the operation of the WPA on ISS are documented in this paper.
international conference on evolvable systems | 2004
James R. Akse; John T. Holtsnider; Layne Carter
Novel mesoporous bimetallic oxidation catalysts are described, which are currently under development for the deep oxidation (mineralization) of aqueous organic contaminants in wastewater produced on-board manned spacecraft, and lunar and planetary habitats. The goal of the ongoing development program is to produce catalysts capable of organic contaminant mineralization near ambient temperature. Such a development will significantly reduce Equivalent System Mass (ESM) for the ISS Water Processor Assembly (WPA), which must operate at 135°C to convert organic carbon to CO 2 and carboxylic acids. Improvements in catalyst performance were achieved due to the unique structural characteristics of mesoporous materials, which include a three-dimensional network of partially ordered interconnected mesopores (5-25 nm). This structure results in high surface area, high pore volume, and reduced distances for reactants and byproducts to diffuse to and from interior catalyst sites, as compared to the tortuous diffusion path in conventional, high surface area microporous (1-2 nm) supports. Mesocellular Foams (MCFs) composed of silica-zirconia solid solutions, chemically impregnated with platinum and ruthenium, were found to produce the most active catalyst. This catalyst proved capable of mineralization of acetic acid, a refractory organic, at ambient temperature.
international conference on evolvable systems | 2003
Layne Carter; Edward W. O'Connor; Doug Snowdon
The Conductivity Sensor designed for use in the Node 3 Water Processor Assembly (WPA) was based on the existing Space Shuttle application for the fuel cell water system. However, engineering analysis has determined that this sensor design is potentially sensitive to two-phase fluid flow (gadliquid) in microgravity. The source for this sensitivity is the fact that gas bubbles will become lodged between the sensor probe and the wall of the housing without the aid of buoyancy in l-g. Once gas becomes lodged in the housing, the measured conductivity will be offset based on the volume of occluded gas. A development conductivity sensor was flown on the NASA Microgravity Plan to measure the offset, which was determined to range between 0 and 50%. Based on these findings, a development program was initiated at the sensor s manufacturer to develop a sensor design fully compatible with two-phase fluid flow in microgravity.