Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Layne G. Adams is active.

Publication


Featured researches published by Layne G. Adams.


Journal of Wildlife Management | 1995

Caribou calf mortality in Denali National Park, Alaska

Layne G. Adams; Francis J. Singer; Bruce W. Dale

Calf mortality is a major component of caribou (Rangifer tarandus) population dynamics, but little is known about the timing or causes of calf losses, or of characteristics that predispose calves to mortality. During 1984-87, we radiocollared 226 calves (≤3 days old) in the Denali Caribou Herd (DCH), an unhunted population utilized by a natural complement of predators, to determine the extent, timing, and causes of calf mortality and to evaluate influences of year, sex, birthdate, and birth mass on those losses. Overall, 39% of radio-collared calves died as neonates (≤ 15 days old), and 98% of those deaths were attributed to predation. Most neonatal deaths (85%) occurred within 8 days of birth. Few deaths occurred after the neonatal period (5, 10, and 0% of calves instrumented died during 16-30, 31-150, and >150 days of age, respectively). Survival of neonates was lower (P = 0.038) in 1985, following a severe winter, than during the other 3 years. In years other than 1985, calves born during the peak of calving (approx 50% of the total, born 5-8 days after calving onset) experienced higher (P 10 days old. Wolf predation was not related (P > 0.05) to calf age and peaked 10 days after onset of calving. Grizzly bear and wolf predation on neonates during the calving season was a limiting factor for the Denali Caribou Herd.


Journal of Wildlife Management | 1998

Reproductive performance of female Alaskan caribou

Layne G. Adams; Bruce W. Dale

We examined the reproductive performance of female caribou (Rangifer tarandus granti) in relation to age, physical condition, and reproductive experience for 9 consecutive years (1987-95) at Denali National Park, Alaska, during a period of wide variation in winter snowfall. Caribou in Denali differed from other cervid populations where reproductive performance has been investigated, because they occur at low densities (≤0.3/km 2 ) and experience high losses of young to predation. Females first gave birth at 2-6 years old; 56% of these females were 3 years old. Average annual natality rates increased from 27% for 2-year-olds to 100% for 7-year-olds, remained high for 7-13-year-olds (98%), and then declined for females ≥14 years old. Females ≥2 years old that failed to reproduce were primarily sexually immature (76%). Reproductive pauses of sexually mature females occurred predominantly in young (3-6 yr old) and old (≥14 yr old) females. Natality increased witl body mass for 10-month-old females weighed 6 months prior to the autumn breeding season (P = 0.007), and for females >1 year old and weighed during autumn (late Sep-early Nov; P = 0.003). Natality for 2-, 3-, 4-, and 6-year-olds declined with increasing late-winter snowfall (Feb-May; P ≤ 0.039) during the winter prior to breeding In most years, a high percentage of sexually mature females reproduced, and lactation status at the time of breeding did not influence productivity the following year. However, following particularly high snowfall during February-September 1992, productivity was reduced in 1993 for cows successfully rearing calves to autumn the previous year. High losses of calves to predators in 1992 may have increased productivity in 1993. Losses of young-of-the-year to predation prior to the annual breeding season can be an important influence on subsequent productivity for ungulate populations where productivity varies with lactation status of females at the time of breeding.


Journal of Mammalogy | 2005

EFFECTS OF MATERNAL CHARACTERISTICS AND CLIMATIC VARIATION ON BIRTH MASSES OF ALASKAN CARIBOU

Layne G. Adams

Abstract Understanding factors that influence birth mass of mammals provides insights to nutritional trade-offs made by females to optimize their reproduction, growth, and survival. I evaluated variation in birth mass of caribou (Rangifer tarandus) in central Alaska relative to maternal characteristics (age, body mass, cohort, and nutritional condition as influenced by winter severity) during 11 years with substantial variation in winter snowfall. Snowfall during gestation was the predominant factor explaining variation in birth masses, influencing birth mass inversely and through interactions with maternal age and lactation status. Maternal age effects were noted for females ≤ 5 years old, declining in magnitude with each successive age class. Birth mass as a proportion of autumn maternal mass was inversely related to winter snowfall, even though there was no decrease in masses of adult females in late winter associated with severe winters. I found no evidence of a hypothesized intergenerational effect of lower birth masses for offspring of females born after severe winters. Caribou produce relatively small offspring but provide exceptional lactation support for those that survive. Conservative maternal investment before parturition may represent an optimal reproductive strategy given that caribou experience stochastic variation in winter severity during gestation, uncertainty of environmental conditions surrounding the birth season, and intense predation on neonates.


Wildlife Monographs | 2008

Population Dynamics and Harvest Characteristics of Wolves in the Central Brooks Range, Alaska

Layne G. Adams; Robert O. Stephenson; Bruce W. Dale; Robert T. Ahgook; Dominic J. Demma

Abstract Our understanding of wolf (Canis lupus) population dynamics in North America comes largely from studies of protected areas, at-risk populations, and wolf control programs, although most North American wolves experience moderate levels of regulated harvest. During 1986–1992, we investigated the population dynamics and harvests of wolves in the newly created Gates of the Arctic National Park and Preserve in northern Alaska, USA, where wolves were harvested by local residents. Our objectives were to determine wolf abundance, estimate important vital rates (i.e., productivity, survival, emigration), and characterize wolf harvests. We monitored 50 radiocollared wolves in 25 packs over 4 years (Apr 1987–Apr 1991) to assess patterns of dispersal, emigration, survival and mortality causes in the wolf population. We determined pack sizes, home ranges, and pups per pack in autumn (1 Oct) for instrumented wolf packs, and calculated wolf densities in autumn and spring (15 Apr) based on the number of wolves in instrumented packs and the aggregate area those packs inhabited. We also gathered information from local hunters and trappers on the timing, location, methods, and sex–age composition of wolf harvests during 6 winter harvest seasons (Aug 1987–Apr 1992). Wolf densities averaged 6.6 wolves per 1,000 km2 and 4.5 wolves per 1,000 km2 in autumn and spring, respectively, and spring densities increased by 5% per year during our study. On average, pups constituted 50% of the resident wolf population each autumn. An estimated 12% of the population was harvested annually. Natural mortality, primarily intraspecific strife, equaled 11% per year. Young wolves emigrated from the study area at high annual rates (47% and 27% for yearlings and 2-yr-olds, respectively), and we estimated the emigration rate for the population at ≥19% annually. Yearlings and 2-year-olds were lost from the population at rates of 60% per year and 45% per year, respectively, primarily as a result of emigration; mortality was the principal cause of the 26% annual loss of wolves ≥3 years old. On average, 47 wolves were harvested each winter from our study population, or twice the harvest we estimated from survival analyses of radiocollared wolves (23 wolves/yr). We suggest that the additional harvested wolves were transients, including local dispersers and migrants from outside the study area. Trapping harvest was well-distributed throughout the trapping season (Nov–Apr), whereas shooting harvest occurred mainly in February and March. Of 35 individuals who harvested wolves in the area, 6 accounted for 66% of the harvest. We analyzed information from North American wolf populations and determined that annual rates of increase have an inverse, curvilinear relationship with human-caused mortality (r2 = 0.68, P < 0.001) such that population trends were not correlated with annual human take ≤29% (P = 0.614). We provide evidence that wolf populations compensate for human exploitation ≤29% primarily via adjustments in dispersal components (i.e., local dispersal, emigration, and immigration), whereas responses in productivity or natural mortality have little or no role in offsetting harvests. Given the limited effects of moderate levels of human take on wolf population trends and biases in assessing wolf populations and harvests resulting from the existence of transient wolves, the risks of reducing wolf populations inadvertently through regulated harvest are quite low.


Ecological Applications | 2006

INTERSPECIFIC RESOURCE PARTITIONING IN SYMPATRIC URSIDS

Jerrold L. Belant; Knut Kielland; Erich H. Follmann; Layne G. Adams

The fundamental niche of a species is rarely if ever realized because the presence of other species restricts it to a narrower range of ecological conditions. The effects of this narrower range of conditions define how resources are partitioned. Resource partitioning has been inferred but not demonstrated previously for sympatric ursids. We estimated assimilated diet in relation to body condition (body fat and lean and total body mass) and reproduction for sympatric brown bears (Ursus arctos) and American black bears (U. americanus) in south-central Alaska, 1998-2000. Based on isotopic analysis of blood and keratin in claws, salmon (Oncorhynchus spp.) predominated in brown bear diets (> 53% annually) whereas black bears assimilated 0-25% salmon annually. Black bears did not exploit salmon during a year with below average spawning numbers, probably because brown bears deterred black bear access to salmon. Proportion of salmon in assimilated diet was consistent across years for brown bears and represented the major portion of their diet. Body size of brown bears in the study area approached mean body size of several coastal brown bear populations, demonstrating the importance of salmon availability to body condition. Black bears occurred at a comparable density (mass:mass), but body condition varied and was related directly to the amount of salmon assimilated in their diet. Both species gained most lean body mass during spring and all body fat during summer when salmon were present. Improved body condition (i.e., increased percentage body fat) from salmon consumption reduced catabolism of lean body mass during hibernation, resulting in better body condition the following spring. Further, black bear reproduction was directly related to body condition; reproductive rates were reduced when body condition was lower. High body fat content across years for brown bears was reflected in consistently high reproductive levels. We suggest that the fundamental niche of black bears was constrained by brown bears through partitioning of food resources, which varied among years. Reduced exploitation of salmon caused black bears to rely more extensively on less reliable or nutritious food sources (e.g., moose [Alces alces], berries) resulting in lowered body condition and subsequent reproduction.


Journal of Mammalogy | 1998

Timing and Synchrony of Parturition in Alaskan Caribou

Layne G. Adams; Bruce W. Dale

Timing of parturition of caribou ( Rangifer tarandus ) varies within populations, but the relative influences of nutritional condition of females during the autumn breeding season and during gestation on that variation is not known. We determined timing of parturition of caribou in Denali National Park, Alaska, during 1984–1995, which had wide variation in snowfall that influenced nutritional condition and productivity of females. The first young were observed each year between 4 and 15 May. Annual median dates of parturition for radiocollared females during 1987–1995 varied from 13 to 21 May. Synchrony of births (i.e., proportion of births during 7 days centered on the median date) did not vary significantly among years ( P > 0.05). Females ≤4 years old were more likely to give birth after the annual median date than older females ( P = 0.005). Dates of parturition were significantly correlated with masses of females in the previous autumn ( P = 0.034) but not in late winter ( P = 0.155). Births tended to be earlier for parous females that were not lactating during the previous breeding season compared to those that were lactating ( P = 0.030). Annual onsets of parturition varied significantly with snowfall in late winter prior to conception ( P = 0.012) but not with snowfall during gestation. Timing of parturition in our study appeared to be a function of physical condition of breeding females in autumn.


Ecological Applications | 2006

Simulating the influences of various fire regimes on caribou winter habitat

T. Scott Rupp; Mark Olson; Layne G. Adams; Bruce W. Dale; Kyle Joly; Jonathan Henkelman; William B. Collins; Anthony M. Starfield

Caribou are an integral component of high-latitude ecosystems and represent a major subsistence food source for many northern people. The availability and quality of winter habitat is critical to sustain these caribou populations. Caribou commonly use older spruce woodlands with adequate terrestrial lichen, a preferred winter forage, in the understory. Changes in climate and fire regime pose a significant threat to the long-term sustainability of this important winter habitat. Computer simulations performed with a spatially explicit vegetation succession model (ALFRESCO) indicate that changes in the frequency and extent of fire in interior Alaska may substantially impact the abundance and quality of winter habitat for caribou. We modeled four different fire scenarios and tracked the frequency, extent, and spatial distribution of the simulated fires and associated changes to vegetation composition and distribution. Our results suggest that shorter fire frequencies (i.e., less time between recurring fires) on the winter range of the Nelchina caribou herd in eastern interior Alaska will result in large decreases of available winter habitat, relative to that currently available, in both the short and long term. A 30% shortening of the fire frequency resulted in a 3.5-fold increase in the area burned annually and an associated 41% decrease in the amount of spruce-lichen forest found on the landscape. More importantly, simulations with more frequent fires produced a relatively immature forest age structure, compared to that which currently exists, with few stands older than 100 years. This age structure is at the lower limits of stand age classes preferred by caribou from the Nelchina herd. Projected changes in fire regime due to climate warming and/or additional prescribed burning could substantially alter the winter habitat of caribou in interior Alaska and lead to changes in winter range use and/or population dynamics.


Journal of Wildlife Management | 2007

Ranking Alaska Moose Nutrition: Signals to Begin Liberal Antlerless Harvests

Rodney D. Boertje; Kalin A. Kellie; C. Tom Seaton; Mark A. Keech; Donald D. Young; Bruce W. Dale; Layne G. Adams; Andrew R. Aderman

Abstract We focused on describing low nutritional status in an increasing moose (Alces alces gigas) population with reduced predation in Game Management Unit (GMU) 20A near Fairbanks, Alaska, USA. A skeptical public disallowed liberal antlerless harvests of this moose population until we provided convincing data on low nutritional status. We ranked nutritional status in 15 Alaska moose populations (in boreal forests and coastal tundra) based on multiyear twinning rates. Data on age-of-first-reproduction and parturition rates provided a ranking consistent with twinning rates in the 6 areas where comparative data were available. Also, short-yearling mass provided a ranking consistent with twinning rates in 5 of the 6 areas where data were available. Data from 5 areas implied an inverse relationship between twinning rate and browse removal rate. Only in GMU 20A did nutritional indices reach low levels where justification for halting population growth was apparent, which supports prior findings that nutrition is a minor factor limiting most Alaska moose populations compared to predation. With predator reductions, the GMU 20A moose population increased from 1976 until liberal antlerless harvests in 2004. During 1997–2005, GMU 20A moose exhibited the lowest nutritional status reported to date for wild, noninsular, North American populations, including 1) delayed reproduction until moose reached 36 months of age and the lowest parturition rate among 36-month-old moose (29%, n = 147); 2) the lowest average multiyear twinning rates from late-May aerial surveys (x̄ = 7%, SE = 0.9%, n = 9 yr, range = 3–10%) and delayed twinning until moose reached 60 months of age; 3) the lowest average mass of female short-yearlings in Alaska (x̄ = 155 ± 1.6 [SE] kg in the Tanana Flats subpopulation, up to 58 kg below average masses found elsewhere); and 4) high removal (42%) of current annual browse biomass compared to 9–26% elsewhere in boreal forests. When average multiyear twinning rates in GMU 20A (sampled during 1960–2005) declined to <10% in the mid- to late 1990s, we began encouraging liberal antlerless harvests, but only conservative annual harvests of 61–76 antlerless moose were achieved during 1996–2001. Using data in the context of our broader ranking system, we convinced skeptical citizen advisory committees to allow liberal antlerless harvests of 600–690 moose in 2004 and 2005, with the objective of halting population growth of the 16,000–17,000 moose; total harvests were 7–8% of total prehunt numbers. The resulting liberal antlerless harvests served to protect the moose populations health and habitat and to fulfill a mandate for elevated yield. Liberal antlerless harvests appear justified to halt population growth when multiyear twinning rates average ≤10% and ≥1 of the following signals substantiate low nutritional status: <50% of 36-month-old moose are parturient, average multiyear short-yearling mass is <175 kg, or >35% of annual browse biomass is removed by moose.


Ecological Applications | 2010

Are inland wolf–ungulate systems influenced by marine subsidies of Pacific salmon?

Layne G. Adams; Sean D. Farley; Craig A. Stricker; Dominic J. Demma; Gretchen H. Roffler; Dennis C. Miller; Robert O. Rye

Wolves (Canis lupus) in North America are considered obligate predators of ungulates with other food resources playing little role in wolf population dynamics or wolf prey relations. However, spawning Pacific salmon (Oncorhyncus spp.) are common throughout wolf range in northwestern North America and may provide a marine subsidy affecting inland wolf-ungulate food webs far from the coast. We conducted stable-isotope analyses for nitrogen and carbon to evaluate the contribution of salmon to diets of wolves in Denali National Park and Preserve, 1200 river-km from tidewater in interior Alaska, USA. We analyzed bone collagen from 73 wolves equipped with radio collars during 1986-2002 and evaluated estimates of salmon in their diets relative to the availability of salmon and ungulates within their home ranges. We compared wolf densities and ungulate:wolf ratios among regions with differing salmon and ungulate availability to assess subsidizing effects of salmon on these wolf-ungulate systems. Wolves in the northwestern flats of the study area had access to spawning salmon but low ungulate availability and consumed more salmon (17% +/- 7% [mean +/- SD]) than in upland regions, where ungulates were sixfold more abundant and wolves did or did not have salmon spawning areas within their home ranges (8% +/- 6% and 3% +/- 3%, respectively). Wolves were only 17% less abundant on the northwestern flats compared to the remainder of the study area, even though ungulate densities were 78% lower. We estimated that biomass from fall runs of chum (O. keta) and coho (O. kisutch) salmon on the northwestern flats was comparable to the ungulate biomass there, and the contribution of salmon to wolf diets was similar to estimates reported for coastal wolves in southeast Alaska. Given the ubiquitous consumption of salmon by wolves on the northwestern flats and the abundance of salmon there, we conclude that wolf numbers in this region were enhanced by the allochthonous subsidy provided by salmon and discuss implications for wolf-ungulate relations.


Polar Biology | 2010

Population-level resource selection by sympatric brown and American black bears in Alaska

Jerrold L. Belant; Brad Griffith; Yingte Zhang; Erich H. Follmann; Layne G. Adams

Distribution theory predicts that for two species living in sympatry, the subordinate species would be constrained from using the most suitable resources (e.g., habitat), resulting in its use of less suitable habitat and spatial segregation between species. We used negative binomial generalized linear mixed models with fixed effects to estimate seasonal population-level resource selection at two spatial resolutions for female brown bears (Ursus arctos) and female American black bears (U. americanus) in southcentral Alaska during May–September 2000. Black bears selected areas occupied by brown bears during spring which may be related to spatially restricted (i.e., restricted to low elevations) but dispersed or patchy availability of food. In contrast, black bears avoided areas occupied by brown bears during summer. Brown bears selected areas near salmon streams during summer, presumably to access spawning salmon. Use of areas with high berry production by black bears during summer appeared in response to avoidance of areas containing brown bears. Berries likely provided black bears a less nutritious, but adequate food source. We suggest that during summer, black bears were displaced by brown bears, which supports distribution theory in that black bears appeared to be partially constrained from areas containing salmon, resulting in their use of areas containing less nutritious forage. Spatial segregation of brown and American black bears apparently occurs when high-quality resources are spatially restricted and alternate resources are available to the subordinate species. This and previous work suggest that individual interactions between species can result in seasonal population-level responses.

Collaboration


Dive into the Layne G. Adams's collaboration.

Top Co-Authors

Avatar

Bruce W. Dale

Alaska Department of Fish and Game

View shared research outputs
Top Co-Authors

Avatar

David D. Gustine

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Kyle Joly

National Park Service

View shared research outputs
Top Co-Authors

Avatar

L. David Mech

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

William B. Collins

Alaska Department of Fish and Game

View shared research outputs
Top Co-Authors

Avatar

Gretchen H. Roffler

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erich H. Follmann

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

George K. Sage

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge