Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lea Eisenbach is active.

Publication


Featured researches published by Lea Eisenbach.


Nature | 1997

DAP kinase links the control of apoptosis to metastasis

Boaz Inbal; Ofer Cohen; Sylvie Polak-Charcon; Juri Kopolovic; Ezra Vadai; Lea Eisenbach; Adi Kimchi

DAP kinase is a new type of calcium/calmodulin-dependent enzyme that phosphorylates serine/threonine residues on proteins. Its structure contains ankyrin repeats and the ‘death’ domain, and it is associated with the cell cytoskeleton. The gene encoding DAP kinase was initially isolated as a positive mediator of apoptosis induced by interferon-γ, by using a strategy of functional cloning. We have now tested whether this gene has tumour-suppressive activity. We found that lung carcinoma clones, characterized by their highly aggressive metastatic behaviour and originating from two independent murine lung tumours, did not express DAP kinase, in contrast to their low-metastatic counterparts. Restoration of DAP kinase to physiological levels in high-metastatic Lewis carcinoma cells suppressed their ability to form lung metastases after intravenous injection into syngeneic mice, and delayed local tumour growth in a foreign ‘microenvironment’. Conversely, in vivo selection of rare lung lesions following injection into syngeneic mice of low-metastatic Lewis carcinoma cells or of DAP kinase transfectants, was associated with loss of DAP kinase expression. In situ TUNEL staining of tumour sections revealed that DAP kinase expression from the transgene raised the incidence of apoptosis in vivo. DAP-kinase transfectants also showed increased sensitivity in vitro to apoptotic stimuli, of the sort encountered by metastasizing cells at different stages of malignancy. We propose that loss of DAP kinase expression provides a unique mechanism that links suppression of apoptosis to metastasis.


Molecular and Cellular Biology | 2007

Knockdown of ALR (MLL2) Reveals ALR Target Genes and Leads to Alterations in Cell Adhesion and Growth

Irina Issaeva; Yulia Zonis; Tanya Rozovskaia; Kira Orlovsky; Carlo M. Croce; Tatsuya Nakamura; Alexander Mazo; Lea Eisenbach; Eli Canaani

ABSTRACT ALR (MLL2) is a member of the human MLL family, which belongs to a larger SET1 family of histone methyltransferases. We found that ALR is present within a stable multiprotein complex containing a cohort of proteins shared with other SET1 family complexes and several unique components, such as PTIP and the jumonji family member UTX. Like other complexes formed by SET1 family members, the ALR complex exhibited strong H3K4 methyltransferase activity, conferred by the ALR SET domain. By generating ALR knockdown cell lines and comparing their expression profiles to that of control cells, we identified a set of genes whose expression is activated by ALR. Some of these genes were identified by chromatin immunoprecipitation as direct ALR targets. The ALR complex was found to associate in an ALR-dependent fashion with promoters and transcription initiation sites of target genes and to induce H3K4 trimethylation. The most characteristic features of the ALR knockdown cells were changes in the dynamics and mode of cell spreading/polarization, reduced migration capacity, impaired anchorage-dependent and -independent growth, and decreased tumorigenicity in mice. Taken together, our results suggest that ALR is a transcriptional activator that induces the transcription of target genes by covalent histone modification. ALR appears to be involved in the regulation of adhesion-related cytoskeletal events, which might affect cell growth and survival.


Journal of Immunology | 2002

CD66a Interactions Between Human Melanoma and NK Cells: A Novel Class I MHC-Independent Inhibitory Mechanism of Cytotoxicity

Gal Markel; Niva Lieberman; Gil Katz; Tal I. Arnon; Michal Lotem; Olga Drize; Richard S. Blumberg; Erez Bar-Haim; Reuven Mader; Lea Eisenbach; Ofer Mandelboim

NK cells are able to kill virus-infected and tumor cells via a panel of lysis receptors. Cells expressing class I MHC proteins are protected from lysis primarily due to the interactions of several families of NK receptors with both classical and nonclassical class I MHC proteins. In this study we show that a class I MHC-deficient melanoma cell line (1106mel) is stained with several Ig-fused lysis receptors, suggesting the expression of the appropriate lysis ligands. Surprisingly, however, this melanoma line was not killed by CD16-negative NK clones. The lack of killing is shown to be the result of homotypic CD66a interactions between the melanoma line and the NK cells. Furthermore, 721.221 cells expressing the CD66a protein were protected from lysis by YTS cells and by NK cells expressing the CD66a protein. Redirected lysis experiments demonstrated that the strength of the inhibitory effect is correlated with the levels of CD66a expression. Finally, the expression of CD66a protein was observed on NK cells derived from patients with malignant melanoma. These findings suggest the existence of a novel class I MHC-independent inhibitory mechanism of human NK cell cytotoxicity. This may be a mechanism that is used by some of the class I MHC-negative melanoma cells to evade attack by CD66a-positive NK cells.


Nature Medicine | 1995

Regression of established murine carcinoma metastases following vaccination with tumour-associated antigen peptides

Ofer Mandelboim; Ezra Vadai; Mati Fridkin; Anne Katz-Hillel; Michael Feldman; Gideon Berke; Lea Eisenbach

The cure of micrometastases following surgery is the major goal of cancer immunotherapy. We have recently isolated tumour-associated antigen (TAA) peptides, MUT 1 and MUT 2, derived from a mutated connexin 37 gap-junction protein, from the malignant 3LL-D122 murine lung carcinoma. We now report that synthetic MUT 1 or MUT 2 induces effective antitumour cytoxic T lymphocytes. Peptide vaccines protect mice from spontaneous metastases of 3LL-D122 tumours. Moreover, peptide vaccines reduce metastatic loads in mice carrying pre-established micrometastases. Tumour-specific immunity was primarily mediated by CD8+ T cells. This is the first evidence that peptide therapy may be effective in treatment of residual tumours and provides a rationale for the development of peptide vaccines as a modality for cancer therapy.


European Journal of Immunology | 1999

MHC class I-restricted epitope spreading in the context of tumor rejection following vaccination with a single immunodominant CTL epitope

Khaled M. El-Shami; Boaz Tirosh; Erez Bar-Haim; Lior Carmon; Ezra Vadai; Mati Fridkin; Michael Feldman; Lea Eisenbach

Epitope spreading is a process whereby epitopes distinct from and non‐cross‐reactive with an inducing epitope become targets of an evolving immune response. This phenomenon has been associated most notably with the progression of naturally occurring or experimentally induced chronic autoimmune diseases. We have investigated the potential occurrence of epitope spreading in the context of antitumor cytotoxic T cell (CTL) responses using chicken ovalbumin (OVA) as a model antigen. Our results indicate that following rejection of OVA‐expressing EG.7 tumor cells effectuated by a CTL response which is induced against the MHC class I‐restricted immunodominant epitope OVA257 – 264, there occurs intramolecular diversification of the CTL response to two additional OVA‐derived epitopes, OVA176 – 183 and OVA55 – 62, as well as intermolecular spreading to other endogenous tumor‐derived determinants. It seems that CTL‐mediated tumor cell destruction in vivo favors cross‐presentation of additional epitopes with the consequent activation of additional tumor‐reactive lymphocytes. The process of epitope spreading in that context has obvious important implications for the design of antigen‐specific antitumor immunotherapies.


European Journal of Immunology | 2002

Analysis of endogenous peptides bound by soluble MHC class I molecules: a novel approach for identifying tumor‐specific antigens

Eilon Barnea; Ilan Beer; Renana Patoka; Tamar Ziv; Ofra Kessler; Esther Tzehoval; Lea Eisenbach; Nicholas Zavazava; Arie Admon

The Human MHC Project aims at comprehensive cataloging of peptides presented within the context of different human leukocyte antigens (HLA) expressed by cells of various tissue origins, both in health and in disease. Of major interest are peptides presented on cancer cells, which include peptides derived from tumor antigens that are of interest for immunotherapy. Here, HLA‐restricted tumor‐specific antigens were identified by transfecting human breast, ovarian and prostate tumor cell lines with truncated genes of HLA‐A2 and HLA‐B7. Soluble HLA secreted by these cell lines were purified by affinity chromatography and analyzed by nano‐capillary electrospray ionization‐tandem mass spectrometry. Typically, a large peptide pool was recovered and sequenced including peptides derived from MAGE‐B2 and mucin and other new tumor‐derived antigens that may serve as potential candidates for immunotherapy.


Clinical Cancer Research | 2005

Combined Dendritic Cell Cryotherapy of Tumor Induces Systemic Antimetastatic Immunity

Arthur Machlenkin; Ofir Goldberger; Boaz Tirosh; Adrian Paz; Ilan Volovitz; Erez Bar-Haim; Sung-Hyung Lee; Ezra Vadai; Esther Tzehoval; Lea Eisenbach

Purpose: Cryotherapy of localized prostate, renal, and hepatic primary tumors and metastases is considered a minimally invasive treatment demonstrating a low complication rate in comparison with conventional surgery. The main drawback of cryotherapy is that it has no systemic effect on distant metastases. We investigated whether intratumoral injections of dendritic cells following cryotherapy of local tumors (cryoimmunotherapy) provides an improved approach to cancer treatment, combining local tumor destruction and systemic anticancer immunity. Experimental Designs: The 3LL murine Lewis lung carcinoma clone D122 and the ovalbumin-transfected B16 melanoma clone MO5 served as models for spontaneous metastasis. The antimetastatic effect of cryoimmunotherapy was assessed in the lung carcinoma model by monitoring mouse survival, lung weight, and induction of tumor-specific CTLs. The mechanism of cryoimmunotherapy was elucidated in the melanoma model using adoptive transfer of T cell receptor transgenic OT-I CTLs into the tumor-bearing mice, and analysis of Th1/Th2 responses by intracellular cytokine staining in CD4 and CD8 cells. Results: Cryoimmunotherapy caused robust and tumor-specific CTL responses, increased Th1 responses, significantly prolonged survival and dramatically reduced lung metastasis. Although intratumor administration of dendritic cells alone increased the proliferation rate of CD8 cells, only cryoimmunotherapy resulted in the generation of effector memory cells. Furthermore, cryoimmunotherapyprotected mice that had survived primary MO5 tumors from rechallenge with parental tumors. Conclusions: These results present cryoimmunotherapy as a novel approach for systemic treatment of cancer. We envisage that cryotherapy of tumors combined with subsequent in situ immunotherapy by autologous unmodified immature dendritic cells can be applied in practice.


Cancer Research | 2005

Human CTL Epitopes Prostatic Acid Phosphatase-3 and Six-Transmembrane Epithelial Antigen of Prostate-3 as Candidates for Prostate Cancer Immunotherapy

Arthur Machlenkin; Adrian Paz; Erez Bar Haim; Ofir Goldberger; Eran Finkel; Boaz Tirosh; Ilan Volovitz; Ezra Vadai; Gilles Lugassy; Shmuel Cytron; François A. Lemonnier; Esther Tzehoval; Lea Eisenbach

Specific immunotherapy of prostate cancer may be an alternative or be complementary to other approaches for treatment of recurrent or metastasized disease. This study aims at identifying and characterizing prostate cancer-associated peptides capable of eliciting specific CTL responses in vivo. Evaluation of peptide-induced CTL activity in vitro was done following immunization of HLA-A2 transgenic (HHD) mice. An in vivo tumor rejection was tested by adoptive transfer of HHD immune lymphocytes to nude mice bearing human tumors. To confirm the existence of peptide-specific CTL precursors in human, lymphocytes from healthy and prostate cancer individuals were stimulated in vitro in the presence of these peptides and CTL activities were assayed. Two novel immunogenic peptides derived from overexpressed prostate antigens, prostatic acid phosphatase (PAP) and six-transmembrane epithelial antigen of prostate (STEAP), were identified; these peptides were designated PAP-3 and STEAP-3. Peptide-specific CTLs lysed HLA-A2.1+ LNCaP cells and inhibited tumor growth on adoptive immunotherapy. Furthermore, peptide-primed human lymphocytes derived from healthy and prostate cancer individuals lysed peptide-pulsed T2 cells and HLA-A2.1+ LNCaP cells. Based on the results presented herein, PAP-3 and STEAP-3 are naturally processed CTL epitopes possessing anti-prostate cancer reactivity in vivo and therefore may constitute vaccine candidates to be investigated in clinical trials.


Oncogene | 1997

PACT: cloning and characterization of a cellular p53 binding protein that interacts with Rb

Arnold Simons; Cathy Melamed-Bessudo; Roland Wolkowicz; Joseph Sperling; Ruth Sperling; Lea Eisenbach; Varda Rotter

Cellular functions of tumor suppressor proteins can be mediated by protein-protein interactions. Using p53 as a probe to screen an expression library, a cDNA encoding a 250 kDa protein was isolated. Recombinant forms of this protein, designated PACT, bind to wild type p53 while two different mutations abolish this interaction. PACT protein can also interfere with p53 specific DNA binding. PACT contains a serine/arginine (SR) rich region and a C′ terminal lysine rich domain. The 250 kDa PACT protein can be precipitated from cell lysates by a method specific for SR proteins. snRNPs can be co-immunoprecipitated from cells with anti-PACT antibodies. These antibodies stain cell nuclei in a speckled pattern reminiscent of the distribution of known splicing factors. Recently, RBQ1, a truncated human homologue of PACT was identified by virtue of Rb binding. We show that RBQ1 is truncated as a result of a possible mutational event. PACT can interact with both cellular Rb and p53.


Journal of Immunology | 2003

Selective Targeting of Melanoma and APCs Using a Recombinant Antibody with TCR-Like Specificity Directed Toward a Melanoma Differentiation Antigen

Galit Denkberg; Avital Lev; Lea Eisenbach; Itai Benhar; Yoram Reiter

Tumor-associated, MHC-restricted peptides, recognized by tumor-specific CD8+ lymphocytes, are desirable targets for novel approaches in immunotherapy because of their highly restricted fine specificity. Abs that recognize these tumor-associated MHC-peptide complexes, with the same specificity as TCR, would therefore be valuable reagents for studying Ag presentation by tumor cells, for visualizing MHC-peptide complexes on cells, and eventually for developing new targeting agents for cancer immunotherapy. To generate molecules with such a unique, fine specificity, we immunized HLA-A2 transgenic mice with a single-chain HLA-A2, complexed with a common antigenic T cell HLA-A2-restricted epitope derived from the melanoma differentiation Ag gp100. Using a phage display approach, we isolated a recombinant scFv Ab that exhibits a characteristic TCR-like binding specificity, yet, unlike TCRs, it did so with a high affinity in the nanomolar range. The TCR-like Ab can recognize the native MHC-peptide complex expressed on the surface of APCs, and on peptide-pulsed or native melanoma cells. Moreover, when fused to a very potent cytotoxic effector molecule in the form of a truncated bacterial toxin, it was able to specifically kill APCs in a peptide-dependent manner. These results demonstrate the utility of high affinity TRC-like scFv recombinant Abs directed toward human cancer T cell epitopes. Such TCR-like Abs may prove to be very useful for monitoring and visualizing the expression of specific MHC-peptide complexes on the surface of tumor cells, APCs, and lymphoid tissues, as well as for developing a new family of targeting agents for immunotherapy.

Collaboration


Dive into the Lea Eisenbach's collaboration.

Top Co-Authors

Avatar

Esther Tzehoval

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ezra Vadai

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Michael Feldman

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Michael Feldman

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Angel Porgador

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Boaz Tirosh

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Arthur Machlenkin

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Erez Bar-Haim

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Mati Fridkin

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Adrian Paz

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge