Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lea M.D. Delbridge is active.

Publication


Featured researches published by Lea M.D. Delbridge.


Journal of Molecular and Cellular Cardiology | 2011

Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice.

Kimberley M. Mellor; Jimmy D. Bell; Morag J. Young; Rebecca H. Ritchie; Lea M.D. Delbridge

Fructose intake is linked with the increasing prevalence of insulin resistance and there is now evidence for a specific insulin-resistant cardiomyopathy. The aim of this study was to determine the cardiac-specific myocardial remodeling effects of high fructose dietary intake. Given the links between insulin signaling, reactive oxygen species generation and autophagy induction, we hypothesized that autophagy contributes to pathologic remodeling in the insulin-resistant heart, and in particular may be a feature of high fructose diet-induced cardiac phenotype. Male C57Bl/6 mice were fed a high fructose (60%) diet or nutrient-matched control diet for 12 weeks. Systemic and myocardial insulin-resistant status was characterized. Superoxide production (lucigenin) and cellular growth and death signaling pathways were examined in myocardial tissue. Myocardial structural remodeling was evaluated by measurement of heart weight indices and histological analysis of collagen deposition (picrosirius red). Fructose-fed mice exhibited hyperglycemia and glucose intolerance, but plasma insulin and blood pressure were unchanged. High fructose intake suppressed the myocardial Akt cell survival signaling coincident with increased cardiac superoxide generation (21% increase, p<0.05). Fructose feeding induced elevated autophagy (LC3B-II: LC3B-I ratio: 46% increase, p<0.05) but not apoptosis signaling (unchanged Bax-1:Bcl-2 ratio). Despite a 28% increase in interstitial fibrosis, no difference in heart weight was observed in fructose-fed mice. We provide the first evidence that myocardial autophagy activation is associated with systemic insulin resistance, and that high level fructose intake inflicts direct cardiac damage. Upregulated autophagy is associated with elevated cardiac superoxide production, suppressed cell survival signaling and fibrotic infiltration in fructose-fed mice. The novel finding that autophagy contributes to cardiac pathology in insulin resistance identifies a new therapeutic target for diabetic cardiomyopathy.


Hypertension | 2009

Angiotensin II Type 2 Receptor Antagonizes Angiotensin II Type 1 Receptor–Mediated Cardiomyocyte Autophagy

Enzo R. Porrello; Angelo D'Amore; Claire L. Curl; Andrew M. Allen; Stephen B. Harrap; Walter G. Thomas; Lea M.D. Delbridge

Autophagy has emerged as an important process in the pathogenesis of cardiovascular diseases, but the proximal triggers for autophagy are unknown. Angiotensin II plays a central role in the pathogenesis of cardiac hypertrophy and heart failure. In this study, we used angiotensin II type 1 (AT1) and type 2 (AT2) receptor–expressing adenoviruses in cultured neonatal cardiomyocytes to provide the first demonstration that neonatal cardiomyocyte autophagic activity is differentially modulated by AT1 and AT2 receptor subtypes. Angiotensin II stimulation (48 hours) of neonatal cardiomyocytes expressing the AT1 receptor alone (Ad-AT1; 10 multiplicities of infection) induced a significant increase in the number of HcRed-LC3 autophagosomes per cell (17.3±1.6 versus 33.3±4.1 autophagosomes per cell; P<0.05). Coexpression of a high ratio of AT2:AT1 (Ad-AT2:Ad-AT1 multiplicity of infection ratio: 20:5) receptors completely abrogated the AT1-mediated increase in autophagy (9.3±1.4 versus 33.3±4.1 autophagosomes per cell; P<0.05). Treatment with the AT2 receptor antagonist PD123319 did not reverse the AT2-mediated antiautophagic effect. AT1- and AT2-mediated autophagic responses were also assessed in cardiomyocytes from a genetic model that exhibits neonatal myocardial growth suppression. In these neonate myocyte cultures, AT1 receptor activation induced a marked increase in the number of myocytes containing cytoplasmic vacuoles compared with the control (22.7±4.1% versus 1.1±0.6%; P<0.001) and was characterized by a nonapoptotic autophagic phenotype. The incidence of cardiomyocyte autophagic vacuolization in this myocyte population decreased dramatically to only 0.4±0.2% in myocytes infected with a high ratio of Ad-AT2:Ad-AT1. This study provides the first description of reciprocal regulation of cardiomyocyte autophagic induction by the AT1 and AT2 receptor subtypes.


Frontiers in Bioscience | 2009

The angiotensin II type 2 (AT2) receptor: an enigmatic seven transmembrane receptor.

Enzo R. Porrello; Lea M.D. Delbridge; Walter G. Thomas

Angiotensin II (AngII) interacts with two receptor subtypes, AT1 and AT2, belonging to the seven transmembrane receptor superfamily. Pharmacological investigations initially suggested that AT2 receptors antagonize AT1 effects. Data from AT2 receptor transgenic and knock-out mice have not been entirely consistent with this interpretation. At the cellular level, a clear mechanistic model of AT2 transduction and signalling has yet to emerge. The AT2 receptor displays the hallmark motifs and signature residues of a G protein-coupled receptor (GPCR), but fails to demonstrate most of the classic features of GPCR signalling. In recent years, unbiased screens for AT2-interacting proteins have identified novel partner proteins involved in AT2 signalling, providing new insight into the mechanisms of AT2 action. A growing body of evidence suggests that the AT2 receptor is constitutively active (i.e. signals without AngII). This review critically evaluates controversies surrounding physiological functions and signalling mechanisms of the AT2 receptor, primarily in a cardiovascular context. Recent advances in the field are highlighted and findings challenging the concept that the AT2 receptor is a conventional angiotensin receptor are considered.


Endocrinology | 2012

Macrophage Mineralocorticoid Receptor Signaling Plays a Key Role in Aldosterone-Independent Cardiac Fibrosis

Laura A. Bienvenu; James P. Morgan; Amanda J. Rickard; Greg H. Tesch; Greg A. Cranston; Elizabeth K. Fletcher; Lea M.D. Delbridge; Morag J. Young

Mineralocorticoid receptor (MR) activation promotes the development of cardiac fibrosis and heart failure. Clinical evidence demonstrates that MR antagonism is protective even when plasma aldosterone levels are not increased. We hypothesize that MR activation in macrophages drives the profibrotic phenotype in the heart even when aldosterone levels are not elevated. The aim of the present study was to establish the role of macrophage MR signaling in mediating cardiac tissue remodeling caused by nitric oxide (NO) deficiency, a mineralocorticoid-independent insult. Male wild-type (MRflox/flox) and macrophage MR-knockout (MRflox/flox/LysMCre/+; mac-MRKO) mice were uninephrectomized, maintained on 0.9% NaCl drinking solution, with either vehicle (control) or the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (L-NAME; 150 mg/kg/d) for 8 wk. NO deficiency increased systolic blood pressure at 4 wk in wild-type L-NAME/salt-treated mice compared with all other groups. At 8 wk, systolic blood pressure was increased above control in both L-NAME/salt treated wild-type and mac-MRKO mice by approximately 28 mm Hg by L-NAME/salt. Recruitment of macrophages was increased 2- to 3-fold in both L-NAME/salt treated wild-type and mac-MRKO. Inducible NOS positive macrophage infiltration and TNFα mRNA expression was greater in wild-type L-NAME/salt-treated mice compared with mac-MRKO, demonstrating that loss of MR reduces M1 phenotype. mRNA levels for markers of vascular inflammation and oxidative stress (NADPH oxidase 2, p22phox, intercellular adhesion molecule-1, G protein-coupled chemokine receptor 5) were similar in treated wild-type and mac-MRKO mice compared with control groups. In contrast, L-NAME/salt treatment increased interstitial collagen deposition in wild-type by about 33% but not in mac-MRKO mice. mRNA levels for connective tissue growth factor and collagen III were also increased above control treatment in wild-type (1.931 ± 0.215 vs. 1 ± 0.073) but not mac-MRKO mice (1.403 ± 0.150 vs. 1.286 ± 0.255). These data demonstrate that macrophage MR are necessary for the translation of inflammation and oxidative stress into interstitial and perivascular fibrosis after NO deficiency, even when plasma aldosterone is not elevated.


The Journal of Steroid Biochemistry and Molecular Biology | 2013

Sex and sex hormones in cardiac stress—Mechanistic insights

Jimmy D. Bell; G. Bernasochi; Upasna Varma; A. Raaijmakers; Lea M.D. Delbridge

Important sex differences in the onset and characteristics of cardiovascular disease are evident, yet the mechanistic details remain unresolved. Men are more susceptible to cardiovascular disease earlier in life, though younger women who have a cardiovascular event are more likely to experience adverse outcomes. Emerging evidence is prompting a re-examination of the conventional view that estrogen is protective and testosterone a liability. The heart expresses both androgen and estrogen receptors and is functionally responsive to circulating sex steroids. New evidence of cardiac aromatase expression indicates local estrogen production may also exert autocrine/paracrine actions in the heart. Cardiomyocyte contractility studies suggest testosterone and estrogen have contrasting inotropic actions, and modulate Ca(2+) handling and transient characteristics. Experimentally, sex differences are also evident in cardiac stress responses. Female hearts are generally less susceptible to acute ischemic damage and associated arrhythmias, and generally are more resistant to stress-induced hypertrophy and heart failure, attributed to the cardioprotective actions of estrogen. However, more recent data show that testosterone can also improve acute post-ischemic outcomes and facilitate myocardial function and survival in chronic post-infarction. The myocardial actions of sex steroids are complex and context dependent. A greater mechanistic understanding of the specific actions of systemic/local sex steroids in different cardiovascular disease states has potential to lead to the development of cardiac therapies targeted specifically for men and women.


Clinical and Experimental Pharmacology and Physiology | 2006

CARDIAC HYPERTROPHY, SUBSTRATE UTILIZATION AND METABOLIC REMODELLING: CAUSE OR EFFECT?

Rebecca H. Ritchie; Lea M.D. Delbridge

1 Metabolic remodelling in the heart occurs in response to chronically altered workload and substrate availability. Recently, the importance of the metabolic remodelling processes inherent in the hypertrophic growth response (whether primary or secondary) has been recognized. 2 Altered energy demand, shifts in substrate utilization and increased oxidative stress are observed in the hypertrophic heart. Both a shift away from carbohydrate usage (i.e. insulin resistance) and a shift to carbohydrate usage (i.e. pressure loading) are associated with disturbed cardiomyocyte Ca2+ homeostasis and the development of cardiac hypertrophy. 3 A change in the balance of myocardial usage of fatty acid and glucose substrates must entail a degree of cellular oxidative stress. Increased throughput of any substrate will necessarily involve a regional imbalance between reactive oxygen species (ROS) production and breakdown. 4 In addition to a number of enzyme generators of ROS at various intracellular locations, the heart also contains a number of endogenous anti‐oxidants, to restrict steady state ROS levels. The balance between ROS generation and their elimination by endogenous anti‐oxidant mechanisms plays a critical role in preserving cardiac function; inappropriate levels of myocardial ROS likely precipitate impairment of myocardial function and abnormalities in cardiac structure. 5 Although different metabolic adaptations are associated with hypertrophic responses of contrasting aetiology, there is accumulating evidence that the joint insults of increased production of ROS and disturbed Ca2+ handling in the cardiomyocyte comprise the primary lesion. These molecular signals operate together in a feed‐forward mode and have the capacity to inflict substantial functional and structural damage on the hypertrophic myocardium.


Clinical and Experimental Pharmacology and Physiology | 2008

EARLY ORIGINS OF CARDIAC HYPERTROPHY: DOES CARDIOMYOCYTE ATTRITION PROGRAMME FOR PATHOLOGICAL ‘CATCH‐UP’ GROWTH OF THE HEART?

Enzo R. Porrello; Robert E. Widdop; Lea M.D. Delbridge

1 Epidemiological and experimental evidence suggests that adult development of cardiovascular disease is influenced by events of prenatal and early postnatal life. Cardiac hypertrophy is recognized as an important predictor of cardiovascular morbidity and mortality, but the developmental origins of this condition are not well understood. 2 In the heart, a switch from hyperplastic to hypertrophic cellular growth occurs during late prenatal or early postnatal life. Postnatal growth of the heart is almost entirely reliant on hypertrophy of individual cardiomyocytes, and damage to heart muscle in adulthood is typically not reparable by cell replacement. Therefore, a reduced number of cardiomyocytes may render the heart more vulnerable in situations where an increased workload is required. 3 A number of different animal models have been used to study fetal programming of adult diseases, including nutritional, hypoxic, maternal/neonatal endocrine stress and genetic models. Although studies investigating the cellular basis of myocardial disease in growth‐restricted models are limited, a reduction in cardiomyocyte number through either reduced cellular proliferation or increased apoptosis appears to be a central feature. 4 The mechanisms responsible for the programming of adult cardiovascular disease are poorly understood. We hypothesize that cardiac hypertrophy can have a developmental origin in excess cardiomyocyte attrition during a critical perinatal growth window. Findings that have directly assessed the impact of fetal growth restriction on the myocardium are considered and cellular and molecular mechanisms involved in the potential pathological ‘catch‐up’ growth of the heart during later maturation are identified.


Journal of Molecular and Cellular Cardiology | 2010

Targeted GLUT-4 deficiency in the heart induces cardiomyocyte hypertrophy and impaired contractility linked with Ca2+ and proton flux dysregulation

Andrea A. Domenighetti; Vennetia R. Danes; Claire L. Curl; Jennifer M. Favaloro; Joseph Proietto; Lea M.D. Delbridge

There is clinical evidence to suggest that impaired myocardial glucose uptake contributes to the pathogenesis of hypertrophic, insulin-resistant cardiomyopathy. The goal of this study was to determine whether cardiac deficiency of the insulin-sensitive glucose transporter, GLUT4, has deleterious effect on cardiomyocyte excitation-contraction coupling. Cre-Lox mouse models of cardiac GLUT4 knockdown (KD, 85% reduction) and knockout (KO, >95% reduction), which exhibit similar systemic hyperinsulinemic and hyperglycemic states, were investigated. The Ca(2+) current (I(Ca)) and Na(+)-Ca(2+) exchanger (NCX) fluxes, Na(+)-H(+) exchanger (NHE) activity, and contractile performance of GLUT4-deficient myocytes was examined using whole-cell patch-clamp, epifluorescence, and imaging techniques. GLUT4-KO exhibited significant cardiac enlargement characterized by cardiomyocyte hypertrophy (40% increase in cell area) and fibrosis. GLUT4-KO myocyte contractility was significantly diminished, with reduced mean maximum shortening (5.0+/-0.4% vs. 6.2+/-0.6%, 5 Hz). Maximal rates of shortening and relaxation were also reduced (20-25%), and latency was delayed. In GLUT4-KO myocytes, the I(Ca) density was decreased (-2.80+/-0.29 vs. -5.30+/-0.70 pA/pF), and mean I(NCX) was significantly increased in both outward (by 60%) and inward (by 100%) directions. GLUT4-KO expression levels of SERCA2 and RyR2 were reduced by approximately 50%. NHE-mediated H(+) flux in response to NH(4)Cl acid loading was markedly elevated GLUT4-KO myocytes, associated with doubled expression of NHE1. These findings demonstrate that, independent of systemic endocrinological disturbance, cardiac GLUT4 deficiency per se provides a lesion sufficient to induce profound alterations in cardiomyocyte Ca(2+) and pH homeostasis. Our investigation identifies the cardiac GLUT4 as a potential primary molecular therapeutic target in ameliorating the functional deficits associated with insulin-resistant cardiomyopathy.


Clinical and Experimental Pharmacology and Physiology | 2010

Reactive oxygen species and insulin-resistant cardiomyopathy.

Kimberley M. Mellor; Rebecca H. Ritchie; Lea M.D. Delbridge

1. The prevalence of insulin resistance has increased markedly in the past decade and is known to be associated with cardiovascular risk. Evidence of an insulin‐resistant cardiomyopathy, independent of pressure or volume loading influences, is now emerging.


Nutrition | 2010

High-fructose diet elevates myocardial superoxide generation in mice in the absence of cardiac hypertrophy

Kimberley M. Mellor; Rebecca H. Ritchie; Greta Meredith; Owen L. Woodman; Margaret J. Morris; Lea M.D. Delbridge

OBJECTIVE Dietary fructose intake has increased considerably in recent decades and this has been paralleled by an increase in the incidence of insulin resistance, especially in children and adolescents. The impact of a high-fructose diet on the myocardium is not fully understood. The aims of this study were to characterize the murine metabolic and cardiac phenotypes associated with a high-fructose diet and to determine whether this diet imparts differential effects with age. METHODS Juvenile (4 wk) and adult (14 wk) C57Bl/6 mice were fed a 60% fructose diet or isoenergetic control (starch) diet for 6 wk. RESULTS At completion of the dietary intervention (at ages 10 and 20 wk), fructose-fed mice were normotensive; hyperinsulinemia and cardiac hypertrophy were not evident. Interestingly, fructose-fed mice exhibited lower blood glucose levels (10 wk: 4.81+/-0.28 versus 5.42+/-0.31 mmol/L; 20 wk: 4.88+/-0.30 versus 5.96+/-0.42 mmol/L, P<0.05) compared with controls. Nicotinamide adenosine dinucleotide phosphate-driven myocardial superoxide production was significantly increased in fructose-fed mice at both ages (by approximately 29% of control at 10 wk of age and 16% at 20 wk, P<0.01). No increase in aortic superoxide production was observed. Fructose feeding did not alter gene expression of the antioxidant thioredoxin-2, suggesting an imbalance between myocardial reactive oxygen species generation and antioxidant induction. CONCLUSION These findings indicate that increased myocardial superoxide production may represent an early and primary cardiac pathologic response to the metabolic challenge of excess dietary fructose in juveniles and adults that can be detected in the absence of cardiac hypertrophy and hypertension.

Collaboration


Dive into the Lea M.D. Delbridge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jimmy D. Bell

University of Westminster

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca H. Ritchie

Baker IDI Heart and Diabetes Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge