Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leah P. Shriver is active.

Publication


Featured researches published by Leah P. Shriver.


Nature Chemical Biology | 2012

Metabolomics implicates altered sphingolipids in chronic pain of neuropathic origin

Gary J. Patti; Oscar Yanes; Leah P. Shriver; Jean-Phillipe Courade; Ralf Tautenhahn; Marianne Manchester; Gary Siuzdak

Neuropathic pain is a debilitating condition for which the development of effective treatments has been limited by an incomplete understanding of its chemical basis. We show by using untargeted metabolomics that sphingomyelin-ceramide metabolism is altered in the dorsal horn of rats with neuropathic pain and that the upregulated, endogenous metabolite N,N-dimethylsphingosine induces mechanical hypersensitivity in vivo. These results demonstrate the utility of metabolomics to implicate unexplored biochemical pathways in disease.


Analytical Chemistry | 2009

Nanostructure Initiator Mass Spectrometry: Tissue Imaging and Direct Biofluid Analysis

Oscar Yanes; Hin-Koon Woo; Trent R. Northen; Stacey R. Oppenheimer; Leah P. Shriver; Jon Apon; Mayra N. Estrada; Michael J. Potchoiba; Rick C. Steenwyk; Marianne Manchester; Gary Siuzdak

Nanostructure initiator mass spectrometry (NIMS) is a recently introduced matrix-free desorption/ionization platform that requires minimal sample preparation. Its application to xenobiotics and endogenous metabolites in tissues is demonstrated, where clozapine and N-desmethylclozapine were observed from mouse and rat brain sections. It has also been applied to direct biofluid analysis where ketamine and norketamine were observed from plasma and urine. Detection of xenobiotics from biofluids was made even more effective using a novel NIMS on-surface extraction method taking advantage of the hydrophobic nature of the initiator. Linear response and limit of detection were also evaluated for xenobiotics such as methamphetamine, codeine, alprazolam, and morphine, revealing that NIMS can be used for quantitative analysis. Overall, our results demonstrate the capacity of NIMS to perform sensitive, simple, and rapid analyses from highly complex biological tissues and fluids.


Analytical Chemistry | 2010

Detection of Carbohydrates and Steroids by Cation-Enhanced Nanostructure-Initiator Mass Spectrometry (NIMS) for Biofluid Analysis and Tissue Imaging

Gary J. Patti; Hin-Koon Woo; Oscar Yanes; Leah P. Shriver; Diane Thomas; Wilasinee Uritboonthai; Junefredo V. Apon; Rick C. Steenwyk; Marianne Manchester; Gary Siuzdak

Nanostructure-initiator mass spectrometry (NIMS) is a highly sensitive, matrix-free technique that is well suited for biofluid analysis and imaging of biological tissues. Here we provide a new technical variation of NIMS to analyze carbohydrates and steroids, molecules that are challenging to detect with traditional mass spectrometric approaches. Analysis of carbohydrates and steroids was accomplished by spray depositing NaCl or AgNO(3) on the NIMS porous silicon surface to provide a uniform environment rich with cationization agents prior to desorption of the fluorinated polymer initiator. Laser desorption/ionization of the ion-coated NIMS surface allowed for Na(+) cationization of carbohydrates and Ag(+) cationization of steroids. The reliability of the approach is quantitatively demonstrated with a calibration curve over the physiological range of glucose and cholesterol concentrations in human serum (1-200 microM). Additionally, we illustrate the sensitivity of the method by showing its ability to detect carbohydrates and steroids down to the 800-amol and 100-fmol levels, respectively. The technique developed is well suited for tissue imaging of biologically significant metabolites such as sucrose and cholesterol. To highlight its applicability, we used cation-enhanced NIMS to image the distribution of sucrose in a Gerbera jamesonii flower stem and the distribution of cholesterol in a mouse brain. The flower stem and brain sections were placed directly on the ion-coated NIMS surface without further preparation and analyzed directly. The overall results reported underscore the potential of NIMS to analyze and image chemically diverse compounds that have been traditionally challenging to observe with mass spectrometry-based techniques.


Neuroscience | 2010

Nanostructure-initiator mass spectrometry (NIMS) imaging of brain cholesterol metabolites in Smith-Lemli-Opitz syndrome

Gary J. Patti; Leah P. Shriver; Christopher A. Wassif; Hin-Koon Woo; Wilasinee Uritboonthai; Jon Apon; Marianne Manchester; Forbes D. Porter; Gary Siuzdak

Cholesterol is an essential component of cellular membranes that is required for normal lipid organization and cell signaling. While the mechanisms associated with maintaining cholesterol homeostasis in the plasma and peripheral tissues have been well studied, the role and regulation of cholesterol biosynthesis in normal brain function and development have proven much more challenging to investigate. Smith-Lemli-Opitz syndrome (SLOS) is a disorder of cholesterol synthesis characterized by mutations of 7-dehydrocholesterol reductase (DHCR7) that impair the reduction of 7-dehydrocholesterol (7DHC) to cholesterol and lead to neurocognitive deficits, including cerebellar hypoplasia and austism behaviors. Here we have used a novel mass spectrometry-based imaging technique called cation-enhanced nanostructure-initiator mass spectrometry (NIMS) for the in situ detection of intact cholesterol molecules from biological tissues. We provide the first images of brain sterol localization in a mouse model for SLOS (Dhcr7(-/-)). In SLOS mice, there is a striking localization of both 7DHC and residual cholesterol in the abnormally developing cerebellum and brainstem. In contrast, the distribution of cholesterol in 1-day old healthy pups was diffuse throughout the cerebrum and comparable to that of adult mice. This study represents the first application of NIMS to localize perturbations in metabolism within pathological tissues and demonstrates that abnormal cholesterol biosynthesis may be particularly important for the development of these brain regions.


Scientific Reports | 2011

Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis.

Leah P. Shriver; Marianne Manchester

Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system and a leading cause of neurological disability. The complex immunopathology and variable disease course of multiple sclerosis have limited effective treatment of all patients. Altering the metabolism of immune cells may be an attractive strategy to modify their function during autoimmunity. We examined the effect of inhibiting fatty acid metabolism in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Mice treated with an inhibitor of carnitine palmitoyltransferase 1 (CPT-1), the rate-limiting enzyme in the beta-oxidation of fatty acids, showed a reduction in disease severity as well as less inflammation and demyelination. Inhibition of CPT-1 in encephalitogenic T-cells resulted in increased apoptosis and reduced inflammatory cytokine production. These results suggest that disruption of fatty acid metabolism promotes downregulation of inflammation in the CNS and that this metabolic pathway is a potential therapeutic target for multiple sclerosis.


Redox biology | 2015

Dimethyl fumarate modulates antioxidant and lipid metabolism in oligodendrocytes

He Huang; Alexandra Taraboletti; Leah P. Shriver

Oxidative stress contributes to pathology associated with inflammatory brain disorders and therapies that upregulate antioxidant pathways may be neuroprotective in diseases such as multiple sclerosis. Dimethyl fumarate, a small molecule therapeutic for multiple sclerosis, activates cellular antioxidant signaling pathways and may promote myelin preservation. However, it is still unclear what mechanisms may underlie this neuroprotection and whether dimethyl fumarate affects oligodendrocyte responses to oxidative stress. Here, we examine metabolic alterations in oligodendrocytes treated with dimethyl fumarate by using a global metabolomic platform that employs both hydrophilic interaction liquid chromatography–mass spectrometry and shotgun lipidomics. Prolonged treatment of oligodendrocytes with dimethyl fumarate induces changes in citric acid cycle intermediates, glutathione, and lipids, indicating that this compound can directly impact oligodendrocyte metabolism. These metabolic alterations are also associated with protection from oxidant challenge. This study provides insight into the mechanisms by which dimethyl fumarate could preserve myelin integrity in patients with multiple sclerosis.


Nanomedicine: Nanotechnology, Biology and Medicine | 2012

Interaction of cowpea mosaic virus nanoparticles with surface vimentin and inflammatory cells in atherosclerotic lesions

Emily M. Plummer; Diane Thomas; Giuseppe Destito; Leah P. Shriver; Marianne Manchester

AIMS Detection of atherosclerosis has generally been limited to the late stages of development, after cardiovascular symptoms present or a clinical event occurs. One possibility for early detection is the use of functionalized nanoparticles. The aim of this study was the early imaging of atherosclerosis using nanoparticles with a natural affinity for inflammatory cells in the lesion. MATERIALS & METHODS We investigated uptake of cowpea mosaic virus by macrophages and foam cells in vitro and correlated this with vimentin expression. We also examined the ability of cowpea mosaic virus to interact with atherosclerotic lesions in a murine model of atherosclerosis. RESULTS & CONCLUSION We found that uptake of cowpea mosaic virus is increased in areas of atherosclerotic lesion. This correlated with increased surface vimentin in the lesion compared with nonlesion vasculature. In conclusion, cowpea mosaic virus and its vimentin-binding region holds potential for use as a targeting ligand for early atherosclerotic lesions, and as a probe for detecting upregulation of surface vimentin during inflammation.


Biomacromolecules | 2013

Lysine addressability and mammalian cell interactions of bacteriophage λ procapsids.

Kristopher J. Koudelka; Shannon Ippoliti; Elizabeth Medina; Leah P. Shriver; Sunia A. Trauger; Carlos Enrique Catalano; Marianne Manchester

Chemically or genetically modified virus particles, termed viral nanoparticles (VNPs), are being explored in applications such as drug delivery, vaccine development, and materials science. Each virus platform has inherent properties and advantages based on its structure, molecular composition, and biomolecular interactions. Bacteriophage λ was studied for its lysine addressability, stability, cellular uptake, and the ability to modify its cellular uptake. λ procapsids could be labeled primarily at a single residue on the gpE capsid protein as determined by tandem mass spectrometry, providing a unique attachment site for further capsid modification. Bioconjugation of transferrin to the procapsids mediated specific interaction with transferrin receptor-expressing cells. These studies demonstrate the utility of bacteriophage λ procapsids and their potential use as targeted drug delivery vehicles.


Neuroscience | 2014

Inflammation triggers production of dimethylsphingosine from oligodendrocytes

Ying-Jr Chen; S. Hill; He Huang; Alexandra Taraboletti; Kevin Cho; R. Gallo; Marianne Manchester; Leah P. Shriver; Gary J. Patti

Neuropathic pain is a chronic, refractory condition that arises after damage to the nervous system. We previously showed that an increased level of the endogenous metabolite N,N-dimethylsphingosine (DMS) in the central nervous system (CNS) is sufficient to induce neuropathic pain-like behavior in rats. However, several important questions remain. First, it has not yet been demonstrated that DMS is produced in humans and its value as a therapeutic target is therefore unknown. Second, the cell types within the CNS that produce DMS are currently unidentified. Here we provide evidence that DMS is present in human CNS tissue. We show that DMS levels increase in demyelinating lesions isolated from patients with multiple sclerosis, an autoimmune disease in which the majority of patients experience chronic pain. On the basis of these results, we hypothesized that oligodendrocytes may be a cellular source of DMS. We show that human oligodendrocytes produce DMS in culture and that the levels of DMS increase when oligodendrocytes are challenged with agents that damage white matter. These results suggest that damage to oligodendrocytes leads to increased DMS production which in turn drives inflammatory astrocyte responses involved in sensory neuron sensitization. Interruption of this pathway in patients may provide analgesia without the debilitating side effects that are commonly observed with other chronic pain therapies.


Acta Biomaterialia | 2016

Fluorinated methacrylamide chitosan hydrogels enhance collagen synthesis in wound healing through increased oxygen availability.

Pritam S. Patil; Natalie Fountas-Davis; He Huang; Michelle Evancho-Chapman; Judith A. Fulton; Leah P. Shriver; Nic D. Leipzig

UNLABELLED In this study, methacrylamide chitosan modified with perfluorocarbon chains (MACF) is used as the base material to construct hydrogel dressings for treating dermal wounds. MACF hydrogels saturated with oxygen (+O2) are examined for their ability to deliver and sustain oxygen, degrade in a biological environment, and promote wound healing in an animal model. The emerging technique of metabolomics is used to understand how MACF+O2 hydrogel dressings improve wound healing. Results indicate that MACF treatment facilitates oxygen transport rate that is two orders of magnitude greater than base MAC hydrogels. MACF hydrogel dressings are next tested in an in vivo splinted rat excisional wound healing model. Histological analysis reveals that MACF+O2 dressings improve re-epithelialization (p<0.0001) and synthesis of collagen over controls (p<0.01). Analysis of endogenous metabolites in the wounds using global metabolomics demonstrates that MACF+O2 dressings promotes a regenerative metabolic process directed toward hydroxyproline and collagen synthesis, with confirmation of metabolite levels within this pathway. The results of this study confirm that increased oxygen delivery through the application of MACF+O2 hydrogels enhances wound healing and metabolomics analyses provides a powerful tool to assess wound healing physiology. STATEMENT OF SIGNIFICANCE This work presents the first application of a novel class of oxygen delivering biomaterials (methacrylamide chitosan modified with perfluorocarbon chains (MACF)) as a hydrogel wound dressing. This manuscript also contains strong focus on the biochemical benefits of MACF dressings on underlying mechanisms vital to successful wound healing. In this vein, this manuscript presents the application of applied metabolomics (tandem mass spectroscopy) to uncover biomaterial interactions with wound healing mechanisms. We believe the approaches described in this manuscript will be of great interest to biomedical scientists and particularly to researchers studying wound healing, metabolomics, applied biomaterials and regenerative medicine.

Collaboration


Dive into the Leah P. Shriver's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary J. Patti

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Gary Siuzdak

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diane Thomas

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Hin-Koon Woo

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge