Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leah R. Hanson is active.

Publication


Featured researches published by Leah R. Hanson.


Journal of Pharmaceutical Sciences | 2010

Intranasal delivery to the central nervous system: mechanisms and experimental considerations.

Shyeilla V. Dhuria; Leah R. Hanson; William H. Frey

The blood-brain barrier (BBB) limits the distribution of systemically administered therapeutics to the central nervous system (CNS), posing a significant challenge to drug development efforts to treat neurological and psychiatric diseases and disorders. Intranasal delivery is a noninvasive and convenient method that rapidly targets therapeutics to the CNS, bypassing the BBB and minimizing systemic exposure. This review focuses on the current understanding of the mechanisms underlying intranasal delivery to the CNS, with a discussion of pathways from the nasal cavity to the CNS involving the olfactory and trigeminal nerves, the vasculature, the cerebrospinal fluid, and the lymphatic system. In addition to the properties of the therapeutic, deposition of the drug formulation within the nasal passages and composition of the formulation can influence the pathway a therapeutic follows into the CNS after intranasal administration. Experimental factors, such as head position, volume, and method of administration, and formulation parameters, such as pH, osmolarity, or inclusion of permeation enhancers or mucoadhesives, can influence formulation deposition within the nasal passages and pathways followed into the CNS. Significant research will be required to develop and improve current intranasal treatments and careful consideration should be given to the factors discussed in this review.


BMC Neuroscience | 2008

Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease.

Leah R. Hanson; William H. Frey

Intranasal delivery provides a practical, non-invasive method of bypassing the blood-brain barrier (BBB) to deliver therapeutic agents to the brain and spinal cord. This technology allows drugs that do not cross the BBB to be delivered to the central nervous system within minutes. It also directly delivers drugs that do cross the BBB to the brain, eliminating the need for systemic administration and its potential side effects. This is possible because of the unique connections that the olfactory and trigeminal nerves provide between the brain and external environment. Intranasal delivery does not necessarily require any modification to therapeutic agents. A wide variety of therapeutics, including both small molecules and macromolecules, can be targeted to the olfactory system and connected memory areas affected by Alzheimers disease. Using the intranasal delivery system, researchers have reversed neurodegeneration and rescued memory in a transgenic mouse model of Alzheimers disease. Intranasal insulin-like growth factor-I, deferoxamine, and erythropoietin have been shown to protect the brain against stroke in animal models. Intranasal delivery has been used to target the neuroprotective peptide NAP to the brain to treat neurodegeneration. Intranasal fibroblast growth factor-2 and epidermal growth factor have been shown to stimulate neurogenesis in adult animals. Intranasal insulin improves memory, attention, and functioning in patients with Alzheimers disease or mild cognitive impairment, and even improves memory and mood in normal adult humans. This new method of delivery can revolutionize the treatment of Alzheimers disease, stroke, and other brain disorders.


Brain | 2008

Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy

George Francis; Jose A. Martinez; Wei Q. Liu; Kevin Xu; Amit Ayer; Jared M. Fine; Ursula I. Tuor; Gordon W. Glazner; Leah R. Hanson; William H. Frey; Cory Toth

Insulin deficiency in type I diabetes may lead to cognitive impairment, cerebral atrophy and white matter abnormalities. We studied the impact of a novel delivery system using intranasal insulin (I-I) in a mouse model of type I diabetes (streptozotocin-induced) for direct targeting of pathological and cognitive deficits while avoiding potential adverse systemic effects. Daily I-I, subcutaneous insulin (S-I) or placebo in separate cohorts of diabetic and non-diabetic CD1 mice were delivered over 8 months of life. Radio-labelled insulin delivery revealed that I-I delivered more rapid and substantial insulin levels within the cerebrum with less systemic insulin detection when compared with S-I. I-I delivery slowed development of cognitive decline within weekly cognitive/behavioural testing, ameliorated monthly magnetic resonance imaging abnormalities, prevented quantitative morphological abnormalities in cerebrum, improved mouse mortality and reversed diabetes-mediated declines in mRNA and protein for phosphoinositide 3-kinase (PI3K)/Akt and for protein levels of the transcription factors cyclic AMP response element binding protein (CREB) and glycogen synthase kinase 3beta (GSK-3beta) within different cerebral regions. Although the murine diabetic brain was not subject to cellular loss, a diabetes-mediated loss of protein and mRNA for the synaptic elements synaptophysin and choline acetyltransferase was prevented with I-I delivery. As a mechanism of delivery, I-I accesses the brain readily and slows the development of diabetes-induced brain changes as compared to S-I delivery. This therapy and delivery mode, available in humans, may be of clinical utility for the prevention of pathological changes in the diabetic human brain.


Journal of Pharmacology and Experimental Therapeutics | 2009

Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke.

Leah R. Hanson; Annina Roeytenberg; Paula M. Martinez; Valerie G. Coppes; Donald C. Sweet; Reshma J. Rao; Dianne L. Marti; John D. Hoekman; Rachel B. Matthews; William H. Frey; S. Scott Panter

Deferoxamine (DFO) is a high-affinity iron chelator approved by the Food and Drug Administration for treating iron overload. Preclinical research suggests that systemically administered DFO prevents and treats ischemic stroke damage and intracerebral hemorrhage. However, translation into human trials has been limited, probably because of difficulties with DFO administration. A noninvasive method of intranasal administration has emerged recently as a rapid way to bypass the blood-brain barrier and target therapeutic agents to the central nervous system. We report here that intranasal administration targets DFO to the brain and reduces systemic exposure, and that intranasal DFO prevents and treats stroke damage after middle cerebral artery occlusion (MCAO) in rats. A 6-mg dose of DFO resulted in significantly higher DFO concentrations in the brain (0.9–18.5 μM) at 30 min after intranasal administration than after intravenous administration (0.1–0.5 μM, p < 0.05). Relative to blood concentration, intranasal delivery increased targeting of DFO to the cortex approximately 200-fold compared with intravenous delivery. Intranasal administration of three 6-mg doses of DFO did not result in clinically significant changes in blood pressure or heart rate. Pretreatment with intranasal DFO (three 6-mg doses) 48 h before MCAO significantly decreased infarct volume by 55% versus control (p < 0.05). In addition, post-treatment with intranasal administration of DFO (six 6-mg doses) immediately after reperfusion significantly decreased infarct volume by 55% (p < 0.05). These experiments suggest that intranasally administered DFO may be a useful treatment for stroke, and a prophylactic for patients at high risk for stroke.


Rejuvenation Research | 2010

Protective Effects of Intranasal Losartan in the APP/PS1 Transgenic Mouse Model of Alzheimer Disease

Lusine Danielyan; Roman Klein; Leah R. Hanson; Marine Buadze; Matthias Schwab; Christoph H. Gleiter; William H. Frey

The local renin-angiotensin system (RAS) in the brain is a multitasking system controlling a plethora of essential functions such as neurogenic hypertension, baroreflexes, and sympathetic activity. Aside from its vasoactive actions, brain angiotensin II (AT-II) has also been implicated in the pathogenesis of cognitive decline, and beneficial effects of angiotensin receptor blockers (ARBs) in Alzheimer (AD) and Parkinson diseases (PD) are suggested. However, the use of ARBs at antihypertensive dosages would lead to unwanted hypotensive reactions in AD patients. Here we treated the APP/PS1 transgenic mouse model of AD with the ARB losartan (10 mg/kg body weight) to determine whether blockade of the AT-II receptor subtype 1 (AT1-R) with intranasal losartan, using at a dosage far below its systemic antihypertensive dose, could maintain its neuroprotective effects independent of its systemic vasoactive action. Intranasal losartan treatment (10 mg/kg every other day for 2 months) of APP/PS1 mice decreased amyloid beta (Abeta) plaques 3.7-fold. Blood serum levels of interleukin-12 (IL-12)p40/p70, IL-1beta, and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased in the vehicle-treated APP/PS1 mice. Intranasal losartan not only decreased IL-12p40/p70, IL-1beta, and GM-CSF, but also increased IL-10, which suppresses inflammation. Furthermore, losartan markedly increased tyrosine hydroxylase expression in the striatum and locus coeruleus. In conclusion, losartan exerts direct neuroprotective effects via its Abeta-reducing and antiinflammatory effects in the central nervous system (CNS). Therefore, intranasal losartan and potentially other ARBs, at concentrations below their threshold for altering systemic blood pressure, offer a new approach for the treatment of AD.


Journal of Drug Targeting | 2010

Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS

Sandra R. Alcalá-Barraza; Michael S. Lee; Leah R. Hanson; Abby A. McDonald; William H. Frey; Linda K. McLoon

Injury to the central nervous system (CNS) generally results in significant neuronal death and functional loss. In vitro experiments have demonstrated that neurotrophic factors such as brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), and neurotrophin-4/5 (NT-4/5) can promote neuronal survival. However, delivery to the injured CNS is difficult as these large protein molecules do not efficiently cross the blood–brain barrier. Intranasal delivery of 70 μg [125I]-radiolabeled BDNF, CNTF, NT-4, or erythropoietin (EPO) resulted in 0.1–1.0 nM neurotrophin concentrations within 25 min in brain parenchyma. In addition, not only did these neurotrophic factors reach the CNS, they were present in sufficient concentrations to activate the prosurvival PI3Kinase/Akt pathway, even where lower levels of neurotrophic factors were measured. Currently traumatic, ischemic and compressive injuries to the CNS have no effective treatment. There is potential clinical relevancy of this method for rescuing injured CNS tissues in order to maintain CNS function in affected patients. The intranasal delivery method has great clinical potential due to (1) simplicity of administration, (2) noninvasive drug administration, (3) relatively rapid CNS delivery, (4) ability to repeat dosing easily, (5) no requirement for drug modification, and (6) minimal systemic exposure.


Gerontologist | 2013

Mindfulness-Based Stress Reduction for Family Caregivers: A Randomized Controlled Trial

Robin R. Whitebird; Mary Jo Kreitzer; A. Lauren Crain; Beth A. Lewis; Leah R. Hanson; Chris J. Enstad

PURPOSE Caring for a family member with dementia is associated with chronic stress, which can have significant deleterious effects on caregivers. The purpose of the Balance Study was to compare a mindfulness-based stress reduction (MBSR) intervention to a community caregiver education and support (CCES) intervention for family caregivers of people with dementia. DESIGN AND METHODS We randomly assigned 78 family caregivers to an MBSR or a CCES intervention, matched for time and attention. Study participants attended 8 weekly intervention sessions and participated in home-based practice. Surveys were completed at baseline, postintervention, and at 6 months. Participants were 32- to 82-year-old predominately non-Hispanic White women caring for a parent with dementia. RESULTS MBSR was more effective at improving overall mental health, reducing stress, and decreasing depression than CCES. Both interventions improved caregiver mental health and were similarly effective at improving anxiety, social support, and burden. IMPLICATIONS MBSR could reduce stress and improve mental health in caregivers of family members with dementia residing in the community.


Journal of Pharmaceutical Sciences | 2009

Intranasal drug targeting of hypocretin-1 (orexin-A) to the central nervous system

Shyeilla V. Dhuria; Leah R. Hanson; William H. Frey

The blood-brain barrier (BBB) limits the distribution of systemically administered therapeutics to the central nervous system (CNS). Intranasal delivery is a noninvasive method that targets drugs to the brain and spinal cord along olfactory and trigeminal neural pathways, bypassing the BBB and minimizing systemic exposure and side effects. To assess intranasal drug targeting of a neuropeptide (hypocretin-1, HC) to the CNS, pharmacokinetics in blood, CNS tissues, and peripheral tissues were compared after intranasal and intravenous infusion to anesthetized rats. Despite a 10-fold lower blood concentration of HC with intranasal administration, both routes resulted in similar brain concentrations. Tissue-to-blood concentration ratios after intranasal administration were significantly greater in all brain regions over 2 h compared to intravenous administration, with the highest ratios in the trigeminal nerve (14-fold) and olfactory bulbs (9-fold). Intranasal delivery increased drug targeting to the brain and spinal cord 5- to 8-fold. Approximately 80% of the area under the brain concentration-time curve following intranasal administration was due to direct transport from the nasal passages. Intranasal delivery rapidly targets HC to the CNS with minimal systemic exposure, most of which reaches the brain intact by mechanisms not involving distribution from the blood and/or cerebrospinal fluid.


Molecular Pharmaceutics | 2010

Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures

Neil J. Johnson; Leah R. Hanson; William H. Frey

Intranasal delivery has been shown to noninvasively deliver drugs from the nose to the brain in minutes along the olfactory and trigeminal nerve pathways, bypassing the blood-brain barrier. However, no one has investigated whether nasally applied drugs target orofacial structures, despite high concentrations observed in the trigeminal nerve innervating these tissues. Following intranasal administration of lidocaine to rats, trigeminally innervated structures (teeth, temporomandibular joint (TMJ), and masseter muscle) were found to have up to 20-fold higher tissue concentrations of lidocaine than the brain and blood as measured by ELISA. This concentration difference could allow intranasally administered therapeutics to treat disorders of orofacial structures (i.e., teeth, TMJ, and masseter muscle) without causing unwanted side effects in the brain and the rest of the body. In this study, an intranasally administered infrared dye reached the brain within 10 minutes. Distribution of dye is consistent with dye entering the trigeminal nerve after intranasal administration through three regions with high drug concentrations in the nasal cavity: the middle concha, the maxillary sinus, and the choana. In humans the trigeminal nerve passes through the maxillary sinus to innervate the maxillary teeth. Delivering lidocaine intranasally may provide an effective anesthetic technique for a noninvasive maxillary nerve block. Intranasal delivery could be used to target vaccinations and treat disorders with fewer side effects such as tooth pain, TMJ disorder, trigeminal neuralgia, headache, and brain diseases.


Journal of Neuroimmune Pharmacology | 2007

Strategies for Intranasal Delivery of Therapeutics for the Prevention and Treatment of NeuroAIDS

Leah R. Hanson; William H. Frey

Intranasal drug administration is a noninvasive method of bypassing the blood–brain barrier (BBB) to deliver neurotrophins and other therapeutic agents to the brain and spinal cord. This method allows drugs that do not cross the BBB to be delivered to the central nervous system (CNS) and eliminates the need for systemic delivery, thereby reducing unwanted systemic side effects. Delivery from the nose to the CNS occurs within minutes along both the olfactory and trigeminal neural pathways. Intranasal delivery occurs by an extracellular route and does not require that drugs bind to any receptor or undergo axonal transport. Intranasal delivery also targets the nasal associated lymphatic tissues (NALT) and deep cervical lymph nodes. In addition, intranasally administered therapeutics are observed at high levels in the blood vessel walls and perivascular spaces of the cerebrovasculature. Using this intranasal method in animal models, researchers have successfully reduced stroke damage, reversed Alzheimer’s neurodegeneration, reduced anxiety, improved memory, stimulated cerebral neurogenesis, and treated brain tumors. In humans, intranasal insulin has been shown to improve memory in normal adults and patients with Alzheimer’s disease. Intranasal delivery strategies that can be employed to treat and prevent NeuroAIDS include: (1) target antiretrovirals to reach HIV that harbors in the CNS; (2) target therapeutics to protect neurons in the CNS; (3) modulate the neuroimmune function of moncyte/macrophages by targeting the lymphatics, perivascular spaces of the cerebrovasculature, and the CNS; and (4) improve memory and cognitive function by targeting therapeutics to the CNS.

Collaboration


Dive into the Leah R. Hanson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cory Toth

University of Calgary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge