Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leah Villegas is active.

Publication


Featured researches published by Leah Villegas.


PLOS ONE | 2011

Xanthine Oxidase-Derived ROS Upregulate Egr-1 via ERK1/2 in PA Smooth Muscle Cells; Model to Test Impact of Extracellular ROS in Chronic Hypoxia

Tanya Hartney; Rahul Birari; Sujatha Venkataraman; Leah Villegas; Maylyn Martinez; Stephen M. Black; Kurt R. Stenmark; Eva Nozik-Grayck

Exposure of newborn calves to chronic hypoxia causes pulmonary artery (PA) hypertension and remodeling. Previous studies showed that the redox-sensitive transcription factor, early growth response-1 (Egr-1), is upregulated in the PA of chronically hypoxic calves and regulates cell proliferation. Furthermore, we established in mice a correlation between hypoxic induction of Egr-1 and reduced activity of extracellular superoxide dismutase (EC-SOD), an antioxidant that scavenges extracellular superoxide. We now hypothesize that loss of EC-SOD in chronically hypoxic calves leads to extracellular superoxide-mediated upregulation of Egr-1. To validate our hypothesis and identify the signaling pathways involved, we utilized PA tissue from normoxic and chronically hypoxic calves and cultured calf and human PA smooth muscle cells (PASMC). Total SOD activity was low in the PA tissue, and only the extracellular SOD component decreased with hypoxia. PA tissue of hypoxic calves showed increased oxidative stress and increased Egr-1 mRNA. To mimic the in vivo hypoxia-induced extracellular oxidant imbalance, cultured calf PASMC were treated with xanthine oxidase (XO), which generates extracellular superoxide and hydrogen peroxide. We found that 1) XO increased Egr-1 mRNA and protein, 2) XO induced the phosphorylation of ERK1/2 and, 3) pretreatment with an ERK1/2 inhibitor prevented induction of Egr-1 by XO. siRNA knock-down of EC-SOD in human PASMC also upregulated Egr-1 mRNA and protein, activated ERK1/2, and enhanced SMC proliferation and reduced apoptosis. We conclude that an oxidant/antioxidant imbalance arising from loss of EC-SOD in the PA with chronic hypoxia induces Egr-1 via activation of ERK1/2 and contributes to pulmonary vascular remodeling.


Antioxidants & Redox Signaling | 2013

Superoxide Dismutase Mimetic, MnTE-2-PyP, Attenuates Chronic Hypoxia-Induced Pulmonary Hypertension, Pulmonary Vascular Remodeling, and Activation of the NALP3 Inflammasome

Leah Villegas; Dylan Kluck; Carlie Field; Rebecca E. Oberley-Deegan; Crystal Woods; Michael E. Yeager; Karim C. El Kasmi; Rashmin C. Savani; Russell P. Bowler; Eva Nozik-Grayck

AIMS Pulmonary hypertension (PH) is characterized by an oxidant/antioxidant imbalance that promotes abnormal vascular responses. Reactive oxygen species, such as superoxide (O(2)(•-)), contribute to the pathogenesis of PH and vascular responses, including vascular remodeling and inflammation. This study sought to investigate the protective role of a pharmacological catalytic antioxidant, a superoxide dismutase (SOD) mimetic (MnTE-2-PyP), in hypoxia-induced PH, vascular remodeling, and NALP3 (NACHT, LRR, and PYD domain-containing protein 3)-mediated inflammation. RESULTS Mice (C57/BL6) were exposed to hypobaric hypoxic conditions, while subcutaneous injections of MnTE-2-PyP (5 mg/kg) or phosphate-buffered saline (PBS) were given 3× weekly for up to 35 days. SOD mimetic-treated groups demonstrated protection against increased right ventricular systolic pressure, indirect measurements of pulmonary artery pressure, and RV hypertrophy. Vascular remodeling was assessed by Ki67 staining to detect vascular cell proliferation, α-smooth muscle actin staining to analyze small vessel muscularization, and hyaluronan (HA) measurements to assess extracellular matrix modulation. Activation of the NALP3 inflammasome pathway was measured by NALP3 expression, caspase-1 activation, and interleukin 1-beta (IL-1β) and IL-18 production. Hypoxic exposure increased PH, vascular remodeling, and NALP3 inflammasome activation in PBS-treated mice, while mice treated with MnTE-2-PyP showed an attenuation in each of these endpoints. INNOVATION This study is the first to demonstrate activation of the NALP3 inflammasome with cleavage of caspase-1 and release of active IL-1 β and IL-18 in chronic hypoxic PH, as well as its attenuation by the SOD mimetic, MnTE-2-PyP. CONCLUSION The ability of the SOD mimetic to scavenge extracellular O(2)(•-) supports our previous observations in EC-SOD-overexpressing mice that implicate extracellular oxidant/antioxidant imbalance in hypoxic PH and implicates its role in hypoxia-induced inflammation.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

Selective depletion of vascular EC-SOD augments chronic hypoxic pulmonary hypertension

Eva Nozik-Grayck; Crystal Woods; Joann M. Taylor; Richard K.P. Benninger; Richard D Johnson; Leah Villegas; Kurt R. Stenmark; David G. Harrison; Susan M. Majka; David Irwin; Kathryn N. Farrow

Excess superoxide has been implicated in pulmonary hypertension (PH). We previously found lung overexpression of the antioxidant extracellular superoxide dismutase (EC-SOD) attenuates PH and pulmonary artery (PA) remodeling. Although comprising a small fraction of total SOD activity in most tissues, EC-SOD is abundant in arteries. We hypothesize that the selective loss of vascular EC-SOD promotes hypoxia-induced PH through redox-sensitive signaling pathways. EC-SOD(loxp/loxp) × Tg(cre/SMMHC) mice (SMC EC-SOD KO) received tamoxifen to conditionally deplete smooth muscle cell (SMC)-derived EC-SOD. Mice were exposed to hypobaric hypoxia for 35 days, and PH was assessed by right ventricular systolic pressure measurements and right ventricle hypertrophy. Vascular remodeling was evaluated by morphometric analysis and two-photon microscopy for collagen. We examined cGMP content and soluble guanylate cyclase expression and activity in lung, lung phosphodiesterase 5 (PDE5) expression and activity, and expression of endothelial nitric oxide synthase and GTP cyclohydrolase-1 (GTPCH-1), the rate-limiting enzyme in tetrahydrobiopterin synthesis. Knockout of SMC EC-SOD selectively decreased PA EC-SOD without altering total lung EC-SOD. PH and vascular remodeling induced by chronic hypoxia was augmented in SMC EC-SOD KO. Depletion of SMC EC-SOD did not impact content or activity of lung soluble guanylate cyclase or PDE5, yet it blunted the hypoxia-induced increase in cGMP. Although total eNOS was not altered, active eNOS and GTPCH-1 decreased with hypoxia only in SMC EC-SOD KO. We conclude that the localized loss of PA EC-SOD augments chronic hypoxic PH. In addition to oxidative inactivation of NO, deletion of EC-SOD seems to reduce eNOS activity, further compromising pulmonary vascular function.


Pediatric Research | 2015

Lack of EC-SOD worsens alveolar and vascular development in a neonatal mouse model of bleomycin-induced bronchopulmonary dysplasia and pulmonary hypertension

Cassidy Delaney; Rachel Wright; Jen Ruey Tang; Crystal Woods; Leah Villegas; Laurie Sherlock; Rashmin C. Savani; Steven H. Abman; Eva Nozik-Grayck

Background:Pulmonary hypertension (PH) worsens clinical outcomes in former preterm infants with bronchopulmonary dysplasia (BPD). Oxidant stress disrupts alveolar and vascular development in models of BPD. Bleomycin causes oxidative stress and induces BPD and PAH in neonatal rats. Disruption in the vascular endothelial growth factor (VEGF) and nitric oxide signaling pathways contributes to BPD. We hypothesized that loss of EC-SOD would worsen PAH associated with BPD in a neonatal mouse model of bleomycin-induced BPD by disrupting the VEGF/NO signaling pathway.Methods:Neonatal wild-type mice (WT), and mice lacking EC-SOD (EC-SOD KO) received intraperitoneal bleomycin (2 units/kg) or phosphate-buffered saline (PBS) three times weekly and were evaluated at weeks 3 or 4.Results:Lack of EC-SOD impaired alveolar development and resulted in PH (elevated right ventricular systolic pressures, right ventricular hypertrophy (RVH)), decreased vessel density, and increased small vessel muscularization. Exposure to bleomycin further impaired alveolar development, worsened RVH and vascular remodeling. Lack of EC-SOD and bleomycin treatment decreased lung total and phosphorylated VEGFR2 and eNOS protein expression.Conclusion:EC-SOD is critical in preserving normal lung development and loss of EC-SOD results in disrupted alveolar development, PAH and vascular remodeling at baseline, which is further worsened with bleomycin and associated with decreased activation of VEGFR2.


American Journal of Respiratory Cell and Molecular Biology | 2010

Characterization of PCEng2, a β-1,3-Endoglucanase Homolog in Pneumocystis carinii with Activity in Cell Wall Regulation

Leah Villegas; Theodore J. Kottom; Andrew H. Limper

Pneumocystis jirovecii pneumonia is an opportunistic fungal infection that causes severe respiratory impairment in immunocompromised patients. The viability of Pneumocystis organisms is dependent on the cyst cell wall, a structural feature that is regulated by essential cell wall-associated enzymes. The formation of the glucan-rich cystic wall has been previously characterized, but glucan degradation in the organism-specifically, degradation during trophic excystment-is not yet fully understood. Most studies of basic Pneumocystis biology have been conducted in Pneumocystis carinii or Pneumocystis murina, the varieties of this genus that infect rats and mice, respectively. Furthermore, all known treatments for P. jirovecii were initially discovered through studies of P. carinii. Accordingly, in this study, we have identified a P. carinii beta-1,3-endoglucanase gene (PCEng2) that is demonstrated to play a significant role in cell wall regulation. The cDNA sequence contained a 2.2-kb open reading frame with conserved amino acid domains homologous to similar fungal glycosyl hydrolases (GH family 81). The gene transcript showed up-regulation in cystic isolates, and the expressed protein was detected within both cyst and trophic forms. Complementation assays in Eng2-deleted Saccharomyces cerevisiae strains showed restoration of the cell wall separation defect during proliferation, demonstrating the importance of PCEng2 protein. during fungal growth. These findings suggest that regulation of cyst cell wall beta-glucans is a fundamental process during completion of the Pneumocystis life cycle.


Journal of Pulmonary and Respiratory Medicine | 2014

Oxidative Stress and Therapeutic Development in Lung Diseases

Leah Villegas; Timothy Stidham; Eva Nozik-Grayck

Oxidative stress has many implications in the pathogenesis of lung diseases. In this review, we provide an overview of Reactive Oxygen Species (ROS) and nitrogen (RNS) species and antioxidants, how they relate to normal physiological function and the pathophysiology of different lung diseases, and therapeutic strategies. The production of ROS/RNS from endogenous and exogenous sources is first discussed, followed by antioxidant systems that restore oxidative balance and cellular homeostasis. The contribution of oxidant/antioxidant imbalance in lung disease pathogenesis is also discussed. An overview of therapeutic strategies is provided, such as augmenting NO bioactivity, blocking the production of ROS/RNS and replacement of deficient antioxidants. The limitations of current strategies and failures of clinical trials are then addressed, followed by discussion of novel experimental approaches for the development of improved antioxidant therapies.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2010

Characterization of the PcCdc42 small G protein from Pneumocystis carinii, which interacts with the PcSte20 life cycle regulatory kinase

Bryan J. Krajicek; Theodore J. Kottom; Leah Villegas; Andrew H. Limper

Pneumocystis carinii (Pc) causes severe pneumonia in immunocompromised hosts. The binding of Pc trophic forms to alveolar epithelial cells is a central feature of infection, inducing the expression and activation of PcSte20, a gene participating in mating, proliferation, and pseudohyphal growth. In related fungi, Ste20 proteins are generally activated by immediate upstream small G proteins of the Cdc42-like family. PcCdc42 has not been previously described in Pneumocystis. To address the potential role of such a G protein in Pneumocystis, PcCdc42 was cloned from a Pc cDNA library. Using the full-length 576-bp PcCdc42 cDNA sequence, a CHEF blot of genomic DNA yielded a single band, providing evidence that this gene is present as a single copy within the genome. The total length of PcCdc42 cDNA was 576 bp with an estimated molecular mass of approximately 38 kDa. BLASTP analysis demonstrated greater than 80% homology with other fungal Cdc42p proteins. Northern analysis indicated equal mRNA expression in both cystic and trophic life forms. Heterologous expression of PcCdc42 in Saccharomyces cerevisiae (Sc) demonstrated that PcCdc42p was able to restore growth in an ScCdc42Delta yeast strain. Additional assays with purified PcCdc42 protein demonstrated GTP binding and intrinsic GTPase activity, which was partially but significantly suppressed by Clostridium difficile toxin B, characteristic of Cdc42 GTPases. Furthermore, PcCdc42 protein was also shown to bind to the downstream PCSte20 kinase partner in the presence (but not the absence) of GTP. These data indicate that Pc possesses a Cdc42 gene expressing an active G protein, which binds the downstream regulatory kinase PcSte20, important in Pc life cycle regulation.


american thoracic society international conference | 2012

Extracellular Superoxide Dismutase Modulates NALP3-Mediated Inflammation In Chronic Hypoxic Mouse Models

Leah Villegas; Rebecca Oberley-Degan; Russell P. Bowler; Carlie Field; Dylan Kluck; Karim C. El Kasmi; Michael E. Yeager; Rashmin C. Savani; Eva Nozik-Grayck


american thoracic society international conference | 2012

Conditional Knock Down Of SOD3 In Smooth Muscle Cells Augments Chronic Hypoxic Pulmonary Vascular Remodeling And Inflammation

Rahul Birari; Leah Villegas; Julia Locke; Richard J. Johnson; David Irwin; Susan M. Majka; Eva Grayck


american thoracic society international conference | 2011

Superoxide Dismutase Mimetic Attenuates Hypoxia-Induced Pulmonary Vascular Remodeling And NLRP3-Mediated Inflammation

Leah Villegas; Carlie Field; Dylan Kluck; Rebecca E. Oberley-Deegan; Russell P. Bowler; Eva Grayck

Collaboration


Dive into the Leah Villegas's collaboration.

Top Co-Authors

Avatar

Eva Nozik-Grayck

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Rahul Birari

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Carlie Field

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Crystal Woods

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Dylan Kluck

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Kurt R. Stenmark

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Rashmin C. Savani

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge