Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leandi Krüger is active.

Publication


Featured researches published by Leandi Krüger.


Journal of Clinical Investigation | 2013

Smoothened is a master regulator of adult liver repair

Gregory A. Michelotti; Guanhua Xie; Marzena Swiderska; Steve S. Choi; Gamze Karaca; Leandi Krüger; Richard T. Premont; Liu Yang; Wing-Kin Syn; Daniel Metzger; Anna Mae Diehl

When regenerative processes cannot keep pace with cell death, functional epithelia are replaced by scar. Scarring is characterized by both excessive accumulation of fibrous matrix and persistent outgrowth of cell types that accumulate transiently during successful wound healing, including myofibroblasts (MFs) and progenitors. This suggests that signaling that normally directs these cells to repair injured epithelia is deregulated. To evaluate this possibility, we examined liver repair during different types of liver injury after Smoothened (SMO), an obligate intermediate in the Hedgehog (Hh) signaling pathway, was conditionally deleted in cells expressing the MF-associated gene, αSMA. Surprisingly, blocking canonical Hh signaling in MFs not only inhibited liver fibrosis but also prevented accumulation of liver progenitors. Hh-sensitive, hepatic stellate cells (HSCs) were identified as the source of both MFs and progenitors by lineage-tracing studies in 3 other strains of mice, coupled with analysis of highly pure HSC preparations using flow cytometry, immunofluorescence confocal microscopy, RT-PCR, and in situ hybridization. The results identify SMO as a master regulator of hepatic epithelial regeneration based on its ability to promote mesenchymal-to-epithelial transitions in a subpopulation of HSC-derived MFs with features of multipotent progenitors.


Gut | 2014

Myofibroblastic cells function as progenitors to regenerate murine livers after partial hepatectomy

Marzena Swiderska-Syn; Wing-Kin Syn; Guanhua Xie; Leandi Krüger; Mariana Verdelho Machado; Gamze Karaca; Gregory A. Michelotti; Steve S. Choi; Richard T. Premont; Anna Mae Diehl

Objective Smoothened (SMO), a coreceptor of the Hedgehog (Hh) pathway, promotes fibrogenic repair of chronic liver injury. We investigated the roles of SMO+ myofibroblast (MF) in liver regeneration by conditional deletion of SMO in α smooth muscle actin (αSMA)+ cells after partial hepatectomy (PH). Design αSMA-Cre-ERT2×SMO/flox mice were treated with vehicle (VEH) or tamoxifen (TMX), and sacrificed 24–96 h post-PH. Regenerating livers were analysed for proliferation, progenitors and fibrosis by qRT-PCR and quantitative immunohistochemistry (IHC). Results were normalised to liver segments resected at PH. For lineage-tracing studies, αSMA-Cre-ERT2×ROSA-Stop-flox-yellow fluorescent protein (YFP) mice were treated with VEH or TMX; livers were stained for YFP, and hepatocytes isolated 48 and 72 h post-PH were analysed for YFP by flow cytometric analysis (FACS). Results Post-PH, VEH-αSMA-SMO mice increased expression of Hh-genes, transiently accumulated MF, fibrosis and liver progenitors, and ultimately exhibited proliferation of hepatocytes and cholangiocytes. In contrast, TMX-αSMA-SMO mice showed loss of whole liver SMO expression, repression of Hh-genes, enhanced accumulation of quiescent HSC but reduced accumulation of MF, fibrosis and progenitors, as well as inhibition of hepatocyte and cholangiocyte proliferation, and reduced recovery of liver weight. In TMX-αSMA-YFP mice, many progenitors, cholangiocytes and up to 25% of hepatocytes were YFP+ by 48–72 h after PH, indicating that liver epithelial cells were derived from αSMA-YFP+ cells. Conclusions Hh signalling promotes transition of quiescent hepatic stellate cells to fibrogenic MF, some of which become progenitors that regenerate the liver epithelial compartment after PH. Hence, scarring is a component of successful liver regeneration.


Hepatology | 2013

Cross-talk between Notch and Hedgehog regulates hepatic stellate cell fate in mice

Guanhua Xie; Gamze Karaca; Marzena Swiderska-Syn; Gregory A. Michelotti; Leandi Krüger; Yuping Chen; Richard T. Premont; Steve S. Choi; Anna Mae Diehl

Liver repair involves phenotypic changes in hepatic stellate cells (HSCs) and reactivation of morphogenic signaling pathways that modulate epithelial‐to‐mesenchymal/mesenchymal‐to‐epithelial transitions, such as Notch and Hedgehog (Hh). Hh stimulates HSCs to become myofibroblasts (MFs). Recent lineage tracing studies in adult mice with injured livers showed that some MFs became multipotent progenitors to regenerate hepatocytes, cholangiocytes, and HSCs. We studied primary HSC cultures and two different animal models of fibrosis to evaluate the hypothesis that activating the Notch pathway in HSCs stimulates them to become (and remain) MFs through a mechanism that involves an epithelial‐to‐mesenchymal–like transition and requires cross‐talk with the canonical Hh pathway. We found that when cultured HSCs transitioned into MFs, they activated Hh signaling, underwent an epithelial‐to‐mesenchymal–like transition, and increased Notch signaling. Blocking Notch signaling in MFs/HSCs suppressed Hh activity and caused a mesenchymal‐to‐epithelial–like transition. Inhibiting the Hh pathway suppressed Notch signaling and also induced a mesenchymal‐to‐epithelial–like transition. Manipulating Hh and Notch signaling in a mouse multipotent progenitor cell line evoked similar responses. In mice, liver injury increased Notch activity in MFs and Hh‐responsive MF progeny (i.e., HSCs and ductular cells). Conditionally disrupting Hh signaling in MFs of bile‐duct–ligated mice inhibited Notch signaling and blocked accumulation of both MF and ductular cells. Conclusions: The Notch and Hedgehog pathways interact to control the fate of key cell types involved in adult liver repair by modulating epithelial‐to‐mesenchymal–like/mesenchymal‐to‐epithelial–like transitions. (Hepatology 2013;58:1801–1813)


PLOS ONE | 2014

TWEAK/Fn14 Signaling Is Required for Liver Regeneration after Partial Hepatectomy in Mice

Gamze Karaca; Marzena Swiderska-Syn; Guanhua Xie; Wing-Kin Syn; Leandi Krüger; Mariana Verdelho Machado; Katherine S. Garman; Steve S. Choi; Gregory A. Michelotti; Linda C. Burkly; Begoña Ochoa; Anna Mae Diehl

Background & Aims Pro-inflammatory cytokines are important for liver regeneration after partial hepatectomy (PH). Expression of Fibroblast growth factor-inducible 14 (Fn14), the receptor for TNF-like weak inducer of apoptosis (TWEAK), is induced rapidly after PH and remains elevated throughout the period of peak hepatocyte replication. The role of Fn14 in post-PH liver regeneration is uncertain because Fn14 is expressed by liver progenitors and TWEAK-Fn14 interactions stimulate progenitor growth, but replication of mature hepatocytes is thought to drive liver regeneration after PH. Methods To clarify the role of TWEAK-Fn14 after PH, we compared post-PH regenerative responses in wild type (WT) mice, Fn14 knockout (KO) mice, TWEAK KO mice, and WT mice treated with anti-TWEAK antibodies. Results In WT mice, rare Fn14(+) cells localized with other progenitor markers in peri-portal areas before PH. PH rapidly increased proliferation of Fn14(+) cells; hepatocytic cells that expressed Fn14 and other progenitor markers, such as Lgr5, progressively accumulated from 12–8 h post-PH and then declined to baseline by 96 h. When TWEAK/Fn14 signaling was disrupted, progenitor accumulation, induction of pro-regenerative cytokines, hepatocyte and cholangiocyte proliferation, and over-all survival were inhibited, while post-PH liver damage and bilirubin levels were increased. TWEAK stimulated proliferation and increased Lgr5 expression in cultured liver progenitors, but had no effect on either parameter in cultured primary hepatocytes. Conclusions TWEAK-FN14 signaling is necessary for the healthy adult liver to regenerate normally after acute partial hepatectomy.


Gut | 2015

Reduced lipoapoptosis, hedgehog pathway activation and fibrosis in caspase-2 deficient mice with non-alcoholic steatohepatitis

Mariana Verdelho Machado; Gregory A. Michelotti; Pereira Tde A; Jérôme Boursier; Leandi Krüger; Marzena Swiderska-Syn; Gamze Karaca; Guanhua Xie; Cynthia D. Guy; Brittany N. Bohinc; Kelly R. Lindblom; Erika Segear Johnson; Sally Kornbluth; Anna Mae Diehl

Objective Caspase-2 is an initiator caspase involved in multiple apoptotic pathways, particularly in response to specific intracellular stressors (eg, DNA damage, ER stress). We recently reported that caspase-2 was pivotal for the induction of cell death triggered by excessive intracellular accumulation of long-chain fatty acids, a response known as lipoapoptosis. The liver is particularly susceptible to lipid-induced damage, explaining the pandemic status of non-alcoholic fatty liver disease (NAFLD). Progression from NAFLD to non-alcoholic steatohepatitis (NASH) results, in part, from hepatocyte apoptosis and consequential paracrine-mediated fibrogenesis. We evaluated the hypothesis that caspase-2 promotes NASH-related cirrhosis. Design Caspase-2 was localised in liver biopsies from patients with NASH. Its expression was evaluated in different mouse models of NASH, and outcomes of diet-induced NASH were compared in wild-type (WT) and caspase-2-deficient mice. Lipotoxicity was modelled in vitro using hepatocytes derived from WT and caspase-2-deficient mice. Results We showed that caspase-2 is integral to the pathogenesis of NASH-related cirrhosis. Caspase-2 is localised in injured hepatocytes and its expression was markedly upregulated in patients and animal models of NASH. During lipotoxic stress, caspase-2 deficiency reduced apoptosis, inhibited induction of profibrogenic hedgehog target genes in mice and blocked production of hedgehog ligands in cultured hepatocytes. Conclusions These data point to a critical role for caspase-2 in lipid-induced hepatocyte apoptosis in vivo for the production of apoptosis-associated fibrogenic factors and in the progression of lipid-induced liver fibrosis. This raises the intriguing possibility that caspase-2 may be a promising therapeutic target to prevent progression to NASH.


Gut | 2016

Pleiotrophin regulates the ductular reaction by controlling the migration of cells in liver progenitor niches

Gregory A. Michelotti; Anikia Tucker; Marzena Swiderska-Syn; Mariana Verdelho Machado; Steve S. Choi; Leandi Krüger; Erik J. Soderblom; J. Will Thompson; Meredith Mayer-Salman; Heather A. Himburg; Cynthia A. Moylan; Cynthia D. Guy; Katherine S. Garman; Richard T. Premont; John P. Chute; Anna Mae Diehl

Objective The ductular reaction (DR) involves mobilisation of reactive-appearing duct-like cells (RDC) along canals of Hering, and myofibroblastic (MF) differentiation of hepatic stellate cells (HSC) in the space of Disse. Perivascular cells in stem cell niches produce pleiotrophin (PTN) to inactivate the PTN receptor, protein tyrosine phosphatase receptor zeta-1 (PTPRZ1), thereby augmenting phosphoprotein-dependent signalling. We hypothesised that the DR is regulated by PTN/PTPRZ1 signalling. Design PTN-GFP, PTN-knockout (KO), PTPRZ1-KO, and wild type (WT) mice were examined before and after bile duct ligation (BDL) for PTN, PTPRZ1 and the DR. RDC and HSC from WT, PTN-KO, and PTPRZ1-KO mice were also treated with PTN to determine effects on downstream signaling phosphoproteins, gene expression, growth, and migration. Liver biopsies from patients with DRs were also interrogated. Results Although quiescent HSC and RDC lines expressed PTN and PTPRZ1 mRNAs, neither PTN nor PTPRZ1 protein was demonstrated in healthy liver. BDL induced PTN in MF-HSC and increased PTPRZ1 in MF-HSC and RDC. In WT mice, BDL triggered a DR characterised by periportal accumulation of collagen, RDC and MF-HSC. All aspects of this DR were increased in PTN-KO mice and suppressed in PTPRZ1-KO mice. In vitro studies revealed PTN-dependent accumulation of phosphoproteins that control cell-cell adhesion and migration, with resultant inhibition of cell migration. PTPRZ1-positive cells were prominent in the DRs of patients with ductal plate defects and adult cholestatic diseases. Conclusions PTN, and its receptor, PTPRZ1, regulate the DR to liver injury by controlling the migration of resident cells in adult liver progenitor niches.


Histopathology | 2015

Ductal metaplasia in oesophageal submucosal glands is associated with inflammation and oesophageal adenocarcinoma.

Katherine S. Garman; Leandi Krüger; Samantha Thomas; Marzena Swiderska-Syn; Barry K. Moser; Anna Mae Diehl; Shannon McCall

Recent studies have suggested that oesophageal submucosal gland (ESMG) ducts harbour progenitor cells that may contribute to oesophageal metaplasia. Our objective was to determine whether histological differences exist between the ESMGs of individuals with and without oesophageal adenocarcinoma (EAC).


Cellular and molecular gastroenterology and hepatology | 2017

Porcine Esophageal Submucosal Gland Culture Model Shows Capacity for Proliferation and Differentiation

Richard J. von Furstenberg; Joy Li; Christina Stolarchuk; Rachel Feder; Alexa Campbell; Leandi Krüger; Liara M. Gonzalez; Diana M. Cardona; Shannon McCall; Susan J. Henning; Katherine S. Garman

Background & Aims Although cells comprising esophageal submucosal glands (ESMGs) represent a potential progenitor cell niche, new models are needed to understand their capacity to proliferate and differentiate. By histologic appearance, ESMGs have been associated with both overlying normal squamous epithelium and columnar epithelium. Our aim was to assess ESMG proliferation and differentiation in a 3-dimensional culture model. Methods We evaluated proliferation in human ESMGs from normal and diseased tissue by proliferating cell nuclear antigen immunohistochemistry. Next, we compared 5-ethynyl-2′-deoxyuridine labeling in porcine ESMGs in vivo before and after esophageal injury with a novel in vitro porcine organoid ESMG model. Microarray analysis of ESMGs in culture was compared with squamous epithelium and fresh ESMGs. Results Marked proliferation was observed in human ESMGs of diseased tissue. This activated ESMG state was recapitulated after esophageal injury in an in vivo porcine model, ESMGs assumed a ductal appearance with increased proliferation compared with control. Isolated and cultured porcine ESMGs produced buds with actively cycling cells and passaged to form epidermal growth factor–dependent spheroids. These spheroids were highly proliferative and were passaged multiple times. Two phenotypes of spheroids were identified: solid squamous (P63+) and hollow/ductal (cytokeratin 7+). Microarray analysis showed spheroids to be distinct from parent ESMGs and enriched for columnar transcripts. Conclusions Our results suggest that the activated ESMG state, seen in both human disease and our porcine model, may provide a source of cells to repopulate damaged epithelium in a normal manner (squamous) or abnormally (columnar epithelium). This culture model will allow the evaluation of factors that drive ESMGs in the regeneration of injured epithelium. The raw microarray data have been uploaded to the National Center for Biotechnology Information Gene Expression Omnibus (accession number: GSE100543).


American Journal of Physiology-gastrointestinal and Liver Physiology | 2015

Role of Fn14 in acute alcoholic steatohepatitis in mice

Gamze Karaca; Guanhua Xie; Cynthia A. Moylan; Marzena Swiderska-Syn; Cynthia D. Guy; Leandi Krüger; Mariana Verdelho Machado; Steve S. Choi; Gregory A. Michelotti; Linda C. Burkly; Anna Mae Diehl

TNF-like weak inducer of apoptosis (TWEAK) is a growth factor for bipotent liver progenitors that express its receptor, fibroblast growth factor-inducible 14 (Fn14), a TNF receptor superfamily member. Accumulation of Fn14(+) progenitors occurs in severe acute alcoholic steatohepatitis (ASH) and correlates with acute mortality. In patients with severe ASH, inhibition of TNF-α increases acute mortality. The aim of this study was to determine whether deletion of Fn14 improves the outcome of liver injury in alcohol-consuming mice. Wild-type (WT) and Fn14 knockout (KO) mice were fed control high-fat Lieber deCarli diet or high-fat Lieber deCarli diet with 2% alcohol (ETOH) and injected intraperitoneally with CCl₄ for 2 wk to induce liver injury. Mice were euthanized 3 or 10 days after CCl₄ treatment. Survival was assessed. Liver tissues were analyzed for cell death, inflammation, proliferation, progenitor accumulation, and fibrosis by quantitative RT-PCR, immunoblot, hydroxyproline content, and quantitative immunohistochemistry. During liver injury, Fn14 expression, apoptosis, inflammation, hepatocyte replication, progenitor and myofibroblast accumulation, and fibrosis increased in WT mice fed either diet. Mice fed either diet expressed similar TWEAK/Fn14 levels, but ETOH-fed mice had higher TNF-α expression. The ETOH-fed group developed more apoptosis, inflammation, fibrosis, and regenerative responses. Fn14 deletion did not reduce hepatic TNF-α expression but improved all injury parameters in mice fed the control diet. In ETOH-fed mice, Fn14 deletion inhibited TNF-α induction and increased acute mortality, despite improvement in liver injury. Fn14 mediates wound-healing responses that are necessary to survive acute liver injury during alcohol exposure.


Digestive Diseases and Sciences | 2016

Vitamin B5 and N-Acetylcysteine in Nonalcoholic Steatohepatitis: A Preclinical Study in a Dietary Mouse Model

Mariana Verdelho Machado; Leandi Krüger; Mark L. Jewell; Gregory A. Michelotti; Thiago A. Pereira; Guanhua Xie; Cynthia A. Moylan; Anna Mae Diehl

BackgroundNonalcoholic fatty liver disease (NAFLD) is the number one cause of chronic liver disease and second indication for liver transplantation in the Western world. Effective therapy is still not available. Previously we showed a critical role for caspase-2 in the pathogenesis of nonalcoholic steatohepatitis (NASH), the potentially progressive form of NAFLD. An imbalance between free coenzyme A (CoA) and acyl-CoA ratio is known to induce caspase-2 activation.ObjectivesWe aimed to evaluate CoA metabolism and the effects of supplementation with CoA precursors, pantothenate and cysteine, in mouse models of NASH.MethodsCoA metabolism was evaluated in methionine–choline deficient (MCD) and Western diet mouse models of NASH. MCD diet-fed mice were treated with pantothenate and N-acetylcysteine or placebo to determine effects on NASH.ResultsLiver free CoA content was reduced, pantothenate kinase (PANK), the rate-limiting enzyme in the CoA biosynthesis pathway, was down-regulated, and CoA degrading enzymes were increased in mice with NASH. Decreased hepatic free CoA content was associated with increased caspase-2 activity and correlated with worse liver cell apoptosis, inflammation, and fibrosis. Treatment with pantothenate and N-acetylcysteine did not inhibit caspase-2 activation, improve NASH, normalize PANK expression, or restore free CoA levels in MCD diet-fed mice.ConclusionIn mice with NASH, hepatic CoA metabolism is impaired, leading to decreased free CoA content, activation of caspase-2, and increased liver cell apoptosis. Dietary supplementation with CoA precursors did not restore CoA levels or improve NASH, suggesting that alternative approaches are necessary to normalize free CoA during NASH.

Collaboration


Dive into the Leandi Krüger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge