Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leandro L. Minku is active.

Publication


Featured researches published by Leandro L. Minku.


IEEE Transactions on Knowledge and Data Engineering | 2010

The Impact of Diversity on Online Ensemble Learning in the Presence of Concept Drift

Leandro L. Minku; Allan P. White; Xin Yao

Online learning algorithms often have to operate in the presence of concept drift (i.e., the concepts to be learned can change with time). This paper presents a new categorization for concept drift, separating drifts according to different criteria into mutually exclusive and nonheterogeneous categories. Moreover, although ensembles of learning machines have been used to learn in the presence of concept drift, there has been no deep study of why they can be helpful for that and which of their features can contribute or not for that. As diversity is one of these features, we present a diversity analysis in the presence of different types of drifts. We show that, before the drift, ensembles with less diversity obtain lower test errors. On the other hand, it is a good strategy to maintain highly diverse ensembles to obtain lower test errors shortly after the drift independent on the type of drift, even though high diversity is more important for more severe drifts. Longer after the drift, high diversity becomes less important. Diversity by itself can help to reduce the initial increase in error caused by a drift, but does not provide the faster recovery from drifts in long-term.


IEEE Transactions on Knowledge and Data Engineering | 2012

DDD: A New Ensemble Approach for Dealing with Concept Drift

Leandro L. Minku; Xin Yao

Online learning algorithms often have to operate in the presence of concept drifts. A recent study revealed that different diversity levels in an ensemble of learning machines are required in order to maintain high generalization on both old and new concepts. Inspired by this study and based on a further study of diversity with different strategies to deal with drifts, we propose a new online ensemble learning approach called Diversity for Dealing with Drifts (DDD). DDD maintains ensembles with different diversity levels and is able to attain better accuracy than other approaches. Furthermore, it is very robust, outperforming other drift handling approaches in terms of accuracy when there are false positive drift detections. In all the experimental comparisons we have carried out, DDD always performed at least as well as other drift handling approaches under various conditions, with very few exceptions.


IEEE Transactions on Knowledge and Data Engineering | 2015

Resampling-Based Ensemble Methods for Online Class Imbalance Learning

Shuo Wang; Leandro L. Minku; Xin Yao

Online class imbalance learning is a new learning problem that combines the challenges of both online learning and class imbalance learning. It deals with data streams having very skewed class distributions. This type of problems commonly exists in real-world applications, such as fault diagnosis of real-time control monitoring systems and intrusion detection in computer networks. In our earlier work, we defined class imbalance online, and proposed two learning algorithms OOB and UOB that build an ensemble model overcoming class imbalance in real time through resampling and time-decayed metrics. In this paper, we further improve the resampling strategy inside OOB and UOB, and look into their performance in both static and dynamic data streams. We give the first comprehensive analysis of class imbalance in data streams, in terms of data distributions, imbalance rates and changes in class imbalance status. We find that UOB is better at recognizing minority-class examples in static data streams, and OOB is more robust against dynamic changes in class imbalance status. The data distribution is a major factor affecting their performance. Based on the insight gained, we then propose two new ensemble methods that maintain both OOB and UOB with adaptive weights for final predictions, called WEOB1 and WEOB2. They are shown to possess the strength of OOB and UOB with good accuracy and robustness.


Information & Software Technology | 2013

Ensembles and locality

Leandro L. Minku; Xin Yao

ContextEnsembles of learning machines and locality are considered two important topics for the next research frontier on Software Effort Estimation (SEE). ObjectivesWe aim at (1) evaluating whether existing automated ensembles of learning machines generally improve SEEs given by single learning machines and which of them would be more useful; (2) analysing the adequacy of different locality approaches; and getting insight on (3) how to improve SEE and (4) how to evaluate/choose machine learning (ML) models for SEE. MethodA principled experimental framework is used for the analysis and to provide insights that are not based simply on intuition or speculation. A comprehensive experimental study of several automated ensembles, single learning machines and locality approaches, which present features potentially beneficial for SEE, is performed. Additionally, an analysis of feature selection and regression trees (RTs), and an investigation of two tailored forms of combining ensembles and locality are performed to provide further insight on improving SEE. ResultsBagging ensembles of RTs show to perform well, being highly ranked in terms of performance across different data sets, being frequently among the best approaches for each data set and rarely performing considerably worse than the best approach for any data set. They are recommended over other learning machines should an organisation have no resources to perform experiments to chose a model. Even though RTs have been shown to be more reliable locality approaches, other approaches such as k-Means and k-Nearest Neighbours can also perform well, in particular for more heterogeneous data sets. ConclusionCombining the power of automated ensembles and locality can lead to competitive results in SEE. By analysing such approaches, we provide several insights that can be used by future research in the area.


formal methods | 2013

Software effort estimation as a multiobjective learning problem

Leandro L. Minku; Xin Yao

Ensembles of learning machines are promising for software effort estimation (SEE), but need to be tailored for this task to have their potential exploited. A key issue when creating ensembles is to produce diverse and accurate base models. Depending on how differently different performance measures behave for SEE, they could be used as a natural way of creating SEE ensembles. We propose to view SEE model creation as a multiobjective learning problem. A multiobjective evolutionary algorithm (MOEA) is used to better understand the tradeoff among different performance measures by creating SEE models through the simultaneous optimisation of these measures. We show that the performance measures behave very differently, presenting sometimes even opposite trends. They are then used as a source of diversity for creating SEE ensembles. A good tradeoff among different measures can be obtained by using an ensemble of MOEA solutions. This ensemble performs similarly or better than a model that does not consider these measures explicitly. Besides, MOEA is also flexible, allowing emphasis of a particular measure if desired. In conclusion, MOEA can be used to better understand the relationship among performance measures and has shown to be very effective in creating SEE models.


international conference on software engineering | 2014

How to make best use of cross-company data in software effort estimation?

Leandro L. Minku; Xin Yao

Previous works using Cross-Company (CC) data for making Within-Company (WC) Software Effort Estimation (SEE) try to use CC data or models directly to provide predictions in the WC context. So, these data or models are only helpful when they match the WC context well. When they do not, a fair amount of WC training data, which are usually expensive to acquire, are still necessary to achieve good performance. We investigate how to make best use of CC data, so that we can reduce the amount of WC data while maintaining or improving performance in comparison to WC SEE models. This is done by proposing a new framework to learn the relationship between CC and WC projects explicitly, allowing CC models to be mapped to the WC context. Such mapped models can be useful even when the CC models themselves do not match the WC context directly. Our study shows that a new approach instantiating this framework is able not only to use substantially less WC data than a corresponding WC model, but also to achieve similar/better performance. This approach can also be used to provide insight into the behaviour of a company in comparison to others.


2013 IEEE Symposium on Computational Intelligence and Ensemble Learning (CIEL) | 2013

A learning framework for online class imbalance learning

Shuo Wang; Leandro L. Minku; Xin Yao

Online learning has been showing to be very useful for a large number of applications in which data arrive continuously and a timely response is required. In many online cases, the data stream can have very skewed class distributions, known as class imbalance, such as fault diagnosis of realtime control monitoring systems and intrusion detection in computer networks. Classifying imbalanced data streams poses new challenges, which have attracted very little attention so far. As the first work that formally addresses this problem, this paper looks into the underlying issues, clarifies the research questions, and proposes a framework for online class imbalance learning that decomposes the learning task into three modules. Within the framework, we use a time decay function to capture the imbalance rate dynamically. Then, we propose a class imbalance detection method, in order to decide the current imbalance status in data streams. According to this information, two resampling-based online learning algorithms are developed to tackle class imbalance in data streams. Three basic types of class imbalance change are discussed in our studies. The results suggest the usefulness of the learning framework. The proposed methods are shown to be effective on both minority-class accuracy and overall performance in all three cases we considered.


IEEE Transactions on Knowledge and Data Engineering | 2016

Online Ensemble Learning of Data Streams with Gradually Evolved Classes

Yu Sun; Ke Tang; Leandro L. Minku; Shuo Wang; Xin Yao

Class evolution, the phenomenon of class emergence and disappearance, is an important research topic for data stream mining. All previous studies implicitly regard class evolution as a transient change, which is not true for many real-world problems. This paper concerns the scenario where classes emerge or disappear gradually. A class-based ensemble approach, namely Class-Based ensemble for Class Evolution (CBCE), is proposed. By maintaining a base learner for each class and dynamically updating the base learners with new data, CBCE can rapidly adjust to class evolution. A novel under-sampling method for the base learners is also proposed to handle the dynamic class-imbalance problem caused by the gradual evolution of classes. Empirical studies demonstrate the effectiveness of CBCE in various class evolution scenarios in comparison to existing class evolution adaptation methods.


predictive models in software engineering | 2013

The impact of parameter tuning on software effort estimation using learning machines

Liyan Song; Leandro L. Minku; Xin Yao

Background: The use of machine learning approaches for software effort estimation (SEE) has been studied for more than a decade. Most studies performed comparisons of different learning machines on a number of data sets. However, most learning machines have more than one parameter that needs to be tuned, and it is unknown to what extent parameter settings may affect their performance in SEE. Many works seem to make an implicit assumption that parameter settings would not change the outcomes significantly. Aims: To investigate to what extent parameter settings affect the performance of learning machines in SEE, and what learning machines are more sensitive to their parameters. Method: Considering an online learning scenario where learning machines are updated with new projects as they become available, systematic experiments were performed using five learning machines under several different parameter settings on three data sets. Results: While some learning machines such as bagging using regression trees were not so sensitive to parameter settings, others such as multilayer perceptrons were affected dramatically. Combining learning machines into bagging ensembles helped making them more robust against different parameter settings. The average performance of k-NN across different projects was not so much affected by different parameter settings, but the parameter settings that obtained the best average performance across time steps were not so consistently the best throughout time steps as in the other approaches. Conclusions: Learning machines that are more/less sensitive to different parameter settings were identified. The different sensitivity obtained by different learning machines shows that sensitivity to parameters should be considered as one of the criteria for evaluation of SEE approaches. A good learning machine for SEE is not only one which is able to achieve superior performance, but also one that is either less dependent on parameter settings or to which good parameter choices are easy to make.


Journal of Systems and Software | 2015

An empirical evaluation of ensemble adjustment methods for analogy-based effort estimation

Mohammad Azzeh; Ali Bou Nassif; Leandro L. Minku

Ensembles of adjustment methods are not always superior to single methods.Ensembles of linear methods are more accurate than ensembles of nonlinear methods.Adjustment methods based on GA and NN got the worst accuracy.Changing the value of k makes the prediction models behave diversely.RTM variants is the top ranked type based on Scott-Knott and two-way ANOVA. ContextEffort adjustment is an essential part of analogy-based effort estimation, used to tune and adapt nearest analogies in order to produce more accurate estimations. Currently, there are plenty of adjustment methods proposed in literature, but there is no consensus on which method produces more accurate estimates and under which settings. ObjectiveThis paper investigates the potential of ensemble learning for variants of adjustment methods used in analogy-based effort estimation. The number k of analogies to be used is also investigated. MethodWe perform a large scale comparison study where many ensembles constructed from n out of 40 possible valid variants of adjustment methods are applied to eight datasets. The performance of each method was evaluated based on standardized accuracy and effect size. ResultsThe results have been subjected to statistical significance testing, and show reasonable significant improvements on the predictive performance where ensemble methods are applied. ConclusionOur conclusions suggest that ensembles of adjustment methods can work well and achieve good performance, even though they are not always superior to single methods. We also recommend constructing ensembles from only linear adjustment methods, as they have shown better performance and were frequently ranked higher.

Collaboration


Dive into the Leandro L. Minku's collaboration.

Top Co-Authors

Avatar

Xin Yao

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tim Menzies

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Fayola Peters

West Virginia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuo Wang

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rami Bahsoon

University of Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge