Leandro Sastre
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leandro Sastre.
BMC Microbiology | 2008
Juan J. Vicente; María Galardi-Castilla; Ricardo Escalante; Leandro Sastre
BackgroundThe social amoeba Dictyostelium discoideum executes a multicellular development program upon starvation. This morphogenetic process requires the differential regulation of a large number of genes and is coordinated by extracellular signals. The MADS-box transcription factor SrfA is required for several stages of development, including slug migration and spore terminal differentiation.ResultsSubtractive hybridization allowed the isolation of a gene, sigN (SrfA-induced gene N), that was dependent on the transcription factor SrfA for expression at the slug stage of development. Homology searches detected the existence of a large family of sigN-related genes in the Dictyostelium discoideum genome. The 13 most similar genes are grouped in two regions of chromosome 2 and have been named Group1 and Group2 sigN genes. The putative encoded proteins are 87–89 amino acids long. All these genes have a similar structure, composed of a first exon containing a 13 nucleotides long open reading frame and a second exon comprising the remaining of the putative coding region. The expression of these genes is induced at10 hours of development. Analyses of their promoter regions indicate that these genes are expressed in the prestalk region of developing structures. The addition of antibodies raised against SigN Group 2 proteins induced disintegration of multi-cellular structures at the mound stage of development.ConclusionA large family of genes coding for small proteins has been identified in D. discoideum. Two groups of very similar genes from this family have been shown to be specifically expressed in prestalk cells during development. Functional studies using antibodies raised against Group 2 SigN proteins indicate that these genes could play a role during multicellular development.
Journal of Cell Science | 2006
Patricia Torija; Juan J. Vicente; Tiago B. Rodrigues; Alicia Robles; Sebastián Cerdán; Leandro Sastre; Rosa M. Calvo; Ricardo Escalante
Genomic sequencing has revealed a large number of evolutionary conserved genes of unknown function. In the absence of characterized functional domains, the discovery of the role of these genes must rely on experimental approaches. We have selected 30 Dictyostelium discoideum genes of unknown function that showed high similarity to uncharacterized human genes and were absent in the complete proteomes from Saccharomyces cerevisiae and S. pombe. No putative functional motifs were found in their predicted encoded proteins. Eighteen genes were successfully knocked-out and three of them showed obvious phenotypes. A detailed analysis of one of them, midA, is presented in this report. Disruption of midA in Dictyostelium leads to pleiotropic defects. Cell size, growth rate, phagocytosis and macropinocytosis were affected in the mutant. During development, midA- cells showed an enhanced tendency to remain at the slug stage, and spore viability was compromised. The expression of MidA fused to GFP in midA- strain rescued the phenotype and the fused protein was located in the mitochondria. Although cellular oxygen consumption, mitochondrial content and mitochondrial membrane potential were similar to wild type, the amount of ATP was significantly reduced in the mutant suggesting a mitochondrial dysfunction. Metabolomic analysis by natural-abundance 13C-nuclear magnetic resonance has shown the lack of glycogen accumulation during growth. During starvation, mutant cells accumulated higher levels of ammonia, which inhibited normal development. We hypothesize that the lack of MidA reduces mitochondrial ATP synthetic capacity and this has an impact in some but not all energy-dependent cellular processes. This work exemplifies the potential of Dictyostelium as a model system for functional genomic studies.
Mechanisms of Development | 2004
Ricardo Escalante; Yohko Yamada; David A. Cotter; Leandro Sastre; Masazumi Sameshima
The MADS-box transcription factor SrfA is involved in spore differentiation in Dictyostelium [Development 125 (1998) 3801]. Mutant spores show an altered morphology and loss of viability. A detailed structural analysis of mutant spores has been performed to gain insight into the specific aspects of spore differentiation in which SrfA is involved. Two main structural defects have been observed. One is the formation of high order actin structures, the so-called actin rods. SrfA mutant spores showed the initial stages of rod formation but no mature rods were found in older spores either in the nucleus or the cytoplasm. Moreover, phosphorylation of actin, that is believed to stabilize the actin rods, is strongly reduced in the mutant. The other defect observed was the formation of the spore coat. Young srfA- spores show basically normal trilaminar coat structures suggesting that release of prespore vesicles and basic assembly of the coat takes place in the absence of SrfA. However, the outer layer gets wavier as the spore ages and suffers a progressive degradation suggesting a late defect in the stability of the spore coat. Taken together, these results suggest that SrfA is involved in late events of spore maturation necessary for spore stability.
Eukaryotic Cell | 2004
Ricardo Escalante; Negin Iranfar; Leandro Sastre; William F. Loomis
ABSTRACT Analysis of microarrays containing 6,345 Dictyostelium discoideum genes has identified 21 whose expression is dependent on the MADS box transcription factor SrfA. In wild-type cells, all of these genes are induced late in development. At least four of them are necessary for proper spore differentiation, stability, and/or germination.
Journal of Histochemistry and Cytochemistry | 1995
Ricardo Escalante; Alberto García-Sáez; Leandro Sastre
The spatial pattern of expression of the mRNA encoded by the Na,K-ATPase alpha-subunit cDNA clone pArATNa136 was determined by in situ hybridization of first, second, and third instar Artemia franciscana larvae. This mRNA was expressed at high levels in the salt gland, the antennal gland, and the end of the midgut, which are the three main osmoregulatory organs in Artemia at these stages of development. The pattern of expression was similar at the three stages of development analyzed, although the level of expression increased during development, especially in the salt and antennal glands. The expression of the mRNA coding for another Na, K-ATPase alpha-subunit isoform, the proposed alpha 2-isoform, was also determined and was shown to be limited to the salt gland. These results suggest that the clone pArATNa136 codes for the biochemically defined alpha 1-isoform of the Na,K-ATPase alpha-subunit and reinforce the importance of this isoform in osmoregulation at the three larval stages studied. The alpha 2-isoform may also be involved in osmoregulation during the first stages of larval development.
Eukaryotic Cell | 2003
Ricardo Escalante; Nicolas Moreno; Leandro Sastre
ABSTRACT The MADS box transcription factor SrfA is required for spore differentiation in Dictyostelium discoideum. srfA null strains form rounded spores that do not resist adverse environmental conditions. Five genes whose expression is dependent on SrfA have been isolated by differential hybridization. One of these genes, sigC, is identical to phg1b, previously characterized in mutants with altered adhesive properties and found to encode a nine-transmembrane-domain protein. This gene is transcribed into two mRNAs as the result of alternative splicing of two internal exons. The slower-migrating mRNA codes for a shorter protein that lacks the first transmembrane fragment and is not expressed in srfA null strains. The other four genes (sigA, sigB, sigD, and 45D) are expressed only during late developmental stages. In situ hybridization experiments showed that expression of sigA, sigB, and sigD is restricted to the sorus of developing structures. sigA codes for a homologue of malate dehydrogenase that converts pyruvate to malate to replenish the tricarboxylic acid cycle. sigB encodes a protein with significant similarity to the GP63 metalloproteinase of Leishmania, leishmanolysin. The sequence of SigD is highly similar to that of several spore coat proteins of D. discoideum, and it may play a role in that structure. The gene 45D codes for an RNA-binding protein homologue whose expression is also dependent on the GATA transcription factor stalky (StkA). The expression of sigB is also dependent on both SrfA and StkA. The expression of 45D, but not of sigA, sigB, sigC, and sigD, can be induced in srfA null cells by constitutive protein kinase A activation. Strains in which either sigA, sigB, or sigD is disrupted were isolated and found to form spores that are not detectably different from those of wild-type strains.
Eukaryotic Cell | 2007
Maria Romeralo; Ricardo Escalante; Leandro Sastre; Carlos Lado
ABSTRACT The variability and adaptability of the amoebae from the class Dictyosteliomycetes greatly complicate their systematics. The nucleotide sequences of the ribosomal internal transcribed spacers and the 5.8S ribosomal DNA gene have been determined for 28 isolates, and their utility to discriminate between different species and genera has been shown.
Biochemical and Biophysical Research Communications | 1989
Margarita Díaz-Guerra; Miguel Quintanilla; Ignacio Palmero; Leandro Sastre; Jaime Renart
We report the identification of p21ras and a cDNA coding for it in the crustacean Artemia. The monoclonal antibody Y13-259 immunoprecipitates a polypeptide of 21.5 kDa in 24 hr-old larvae. The homology of p21ras with the Drosophila melanogaster and the mammalian p21s is in the order of 75-80% mRNA (of 1.2 kb in length) is already present in encysted gastrulae, and the levels increase, reaching a maximum before emergence. On the contrary, both the amount of p21ras and its GTP-binding activity are low prior to emergence and rises afterwards. These results suggest that p21ras expression is regulated post-transcriptionally, and that its function(s) is needed for post-hatching events, the more likely being the resumption of cell proliferation.
Methods of Molecular Biology | 2006
Ricardo Escalante; Leandro Sastre
Coordinated cell type differentiation is essential for morphogenesis during Dictyostelium development. The specification of different cell types and the regulation of temporal and spatial patterns of expression of cell type-specific genes are important problems currently being addressed in many laboratories. Besides, determination of gene expression patterns provides significant information in the characterization of developmental mutants. Cell type-specific probes and well characterized promoters are available that allow the identification of most cell types during Dictyostelium development. Expression patterns can be studied by whole-mount in situ messenger RNA (mRNA) detection and by the use of reporter genes under the control of specific promoters. The most common in situ hybridization technique, based on nonradioactive ribo-probes that are hybridized to fixed whole-mounts prepared at different developmental stages, is described. Several reporter genes have been used to characterize gene expression patterns and to determine functional promoter elements. The lacZ gene, coding for the beta-galactosidase enzyme, is the reporter most frequently used in Dictyostelium because both temporal- and spatial-patterns of expression can be easily determined. Generally used beta-galactosidase detection methods are described.
Mechanisms of Development | 2002
Ricardo Escalante; Leandro Sastre
Cell differentiation and morphogenesis are tightly regulated during sporulation in the lower eukaryote Dictyostelium discoideum. The control of the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) is essential to coordinate these processes. Several signal transduction pathways are being recognized that lead to the regulation of intracellular cAMP levels. However, very little is known about the events lying downstream of PKA that are essential to activate late gene expression and terminal differentiation of the spores. We have studied the relationship between PKA and the MADS-box transcription factor SrfA, essential for spore differentiation. Constitutive activation of PKA was not able to rescue sporulation in a strain that lacks srfA suggesting the possibility that srfA functions downstream of PKA in a signal transduction pathway leading to spore maturation. A distal promoter region regulates the induction of srfA expression in the prespore region during culmination. We found that this promoter can be induced precociously by activating PKA with 8-Br-cAMP suggesting a transcriptional regulation by PKA. Moreover, precocious sporulation and expression of the spore marker spiA in a strain that overexpresses PKA, correlates with a precocious induction of srfA expression. The temporal and spatial pattern of expression was also studied in a mutant strain lacking the main adenylyl cyclase that functions during culmination, ACR. This strain is expected to have lower PKA activity and consistently, the level of srfA expression was reduced. Moreover, the temporal induction of srfA in the prespore region was also delayed during culmination. Our results strongly suggest that PKA activation during culmination leads to the induction of the expression of srfA. The correct temporal and spatial pattern of srfA expression appears to be part of a mechanism that ensures the adequate coordination of gene expression and morphogenesis.