Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leanne E. Felkin is active.

Publication


Featured researches published by Leanne E. Felkin.


Circulation | 2007

Direct Intramyocardial But Not Intracoronary Injection of Bone Marrow Cells Induces Ventricular Arrhythmias in a Rat Chronic Ischemic Heart Failure Model

Satsuki Fukushima; Anabel Varela-Carver; Steven R. Coppen; Kenichi Yamahara; Leanne E. Felkin; Joon Lee; Paul J.R. Barton; Cesare M. Terracciano; Magdi H. Yacoub; Ken Suzuki

Background— Therapeutic efficacy of bone marrow (BM) cell injection for treating ischemic chronic heart failure has not been established. In addition, experimental data are lacking on arrhythmia occurrence after BM cell injection. We hypothesized that therapeutic efficacy and arrhythmia occurrence induced by BM cell injection may be affected by the cell delivery route. Methods and Results— Three weeks after left coronary artery ligation, wild-type female rats were injected with 1×107 mononuclear BM cells derived from green fluorescent protein–transgenic male rats through either a direct intramyocardial or a retrograde intracoronary route. Both intramyocardial and intracoronary injection of BM cells demonstrated similar improvement in left ventricular ejection fraction measured by echocardiography and a similar graft size analyzed by real-time polymerase chain reaction for the Y chromosome–specific Sry gene. Noticeably, intramyocardial injection of BM cells induced frequent ventricular premature contractions (108±73 per hour at 7 days after BM cell injection), including multiform, consecutive ventricular premature contractions and ventricular tachycardia for the initial 14 days; intracoronary injection of BM cells and intramyocardial injection of phosphate-buffered saline rarely induced arrhythmias. Immunohistochemistry demonstrated that intramyocardial BM cell injection formed distinct cell clusters containing donor-derived cells and accumulated host-derived inflammatory cells in the infarct border zone, whereas intracoronary BM cell injection provided more homogeneous donor cell dissemination with less inflammation and without disrupting the native myocardial structure. Conclusions— BM cell injection is able to improve cardiac function in ischemic chronic heart failure but has a risk of arrhythmia occurrence when the intramyocardial route is used. Such arrhythmias may be prevented by using the intracoronary route.


Science Translational Medicine | 2015

Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease

Angharad M. Roberts; James S. Ware; Daniel S. Herman; Sebastian Schafer; John Baksi; Alexander G. Bick; Rachel Buchan; Roddy Walsh; Shibu John; Samuel Wilkinson; Francesco Mazzarotto; Leanne E. Felkin; Sungsam Gong; Jacqueline A. L. MacArthur; Fiona Cunningham; Jason Flannick; Stacey B. Gabriel; David Altshuler; P. Macdonald; Matthias Heinig; Anne Keogh; Christopher S. Hayward; Nicholas R. Banner; Dudley J. Pennell; Declan P. O’Regan; Tan Ru San; Antonio de Marvao; Timothy Dawes; Ankur Gulati; Emma J. Birks

Truncating variants of the giant protein titin cause dilated cardiomyopathy when they occur toward the protein’s carboxyl terminus and in highly expressed exons. What Happens When Titins Are Trimmed? The most common form of inherited heart failure, dilated cardiomyopathy, can be caused by mutations in a mammoth heart protein, appropriately called titin. Now, Roberts et al. sort out which titin mutations cause disease and why some people can carry certain titin mutations but remain perfectly healthy. In an exhaustive survey of more than 5200 people, with and without cardiomyopathy, the authors sequenced the titin gene and measured its corresponding RNA and protein levels. The alterations in titin were truncating mutations, which cause short nonfunctional versions of the RNA or protein. These defects produced cardiomyopathy when they occurred closer to the protein’s carboxyl terminus and in exons that were abundantly transcribed. The titin-truncating mutations that occur in the general population tended not to have these characteristics and were usually benign. This new detailed understanding of the molecular basis of dilated cardiomyopathy penetrance will promote better disease management and accelerate rational patient stratification. The recent discovery of heterozygous human mutations that truncate full-length titin (TTN, an abundant structural, sensory, and signaling filament in muscle) as a common cause of end-stage dilated cardiomyopathy (DCM) promises new prospects for improving heart failure management. However, realization of this opportunity has been hindered by the burden of TTN-truncating variants (TTNtv) in the general population and uncertainty about their consequences in health or disease. To elucidate the effects of TTNtv, we coupled TTN gene sequencing with cardiac phenotyping in 5267 individuals across the spectrum of cardiac physiology and integrated these data with RNA and protein analyses of human heart tissues. We report diversity of TTN isoform expression in the heart, define the relative inclusion of TTN exons in different isoforms (using the TTN transcript annotations available at http://cardiodb.org/titin), and demonstrate that these data, coupled with the position of the TTNtv, provide a robust strategy to discriminate pathogenic from benign TTNtv. We show that TTNtv is the most common genetic cause of DCM in ambulant patients in the community, identify clinically important manifestations of TTNtv-positive DCM, and define the penetrance and outcomes of TTNtv in the general population. By integrating genetic, transcriptome, and protein analyses, we provide evidence for a length-dependent mechanism of disease. These data inform diagnostic criteria and management strategies for TTNtv-positive DCM patients and for TTNtv that are identified as incidental findings.


Nature | 2011

Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function.

Chris McDermott-Roe; Junmei Ye; Rizwan Ahmed; Ximing Sun; Anna Serafín; James S. Ware; Leonardo Bottolo; Phil Muckett; Xavier Cañas; Jisheng Zhang; Glenn C. Rowe; Rachel Buchan; Han Lu; Adam Braithwaite; Massimiliano Mancini; David Hauton; Ramon Martí; Elena García-Arumí; Norbert Hubner; Howard J. Jacob; Tadao Serikawa; Vaclav Zidek; František Papoušek; Frantisek Kolar; Maria Cardona; Marisol Ruiz-Meana; David Garcia-Dorado; Joan X. Comella; Leanne E. Felkin; Paul J.R. Barton

Left ventricular mass (LVM) is a highly heritable trait and an independent risk factor for all-cause mortality. So far, genome-wide association studies have not identified the genetic factors that underlie LVM variation, and the regulatory mechanisms for blood-pressure-independent cardiac hypertrophy remain poorly understood. Unbiased systems genetics approaches in the rat now provide a powerful complementary tool to genome-wide association studies, and we applied integrative genomics to dissect a highly replicated, blood-pressure-independent LVM locus on rat chromosome 3p. Here we identified endonuclease G (Endog), which previously was implicated in apoptosis but not hypertrophy, as the gene at the locus, and we found a loss-of-function mutation in Endog that is associated with increased LVM and impaired cardiac function. Inhibition of Endog in cultured cardiomyocytes resulted in an increase in cell size and hypertrophic biomarkers in the absence of pro-hypertrophic stimulation. Genome-wide network analysis unexpectedly implicated ENDOG in fundamental mitochondrial processes that are unrelated to apoptosis. We showed direct regulation of ENDOG by ERR-α and PGC1α (which are master regulators of mitochondrial and cardiac function), interaction of ENDOG with the mitochondrial genome and ENDOG-mediated regulation of mitochondrial mass. At baseline, the Endog-deleted mouse heart had depleted mitochondria, mitochondrial dysfunction and elevated levels of reactive oxygen species, which were associated with enlarged and steatotic cardiomyocytes. Our study has further established the link between mitochondrial dysfunction, reactive oxygen species and heart disease and has uncovered a role for Endog in maladaptive cardiac hypertrophy.


Circulation | 2006

Myocardial expression of the Arginine:Glycine amidinotransferase gene is elevated in heart failure and normalized after recovery : Potential implications for local creatine synthesis

Martin E. Cullen; Ada H.Y. Yuen; Leanne E. Felkin; Ryszard T. Smolenski; Jennifer L. Hall; Suzanne Grindle; Leslie W. Miller; Emma J. Birks; Magdi H. Yacoub; Paul J.R. Barton

Background— Combination therapy consisting of mechanical unloading using a left ventricular assist device (LVAD) and pharmacological intervention can promote recovery from end-stage heart failure, but the mechanism is unknown. Preliminary microarray analysis revealed a significant and unexpected decrease in myocardial arginine:glycine amidinotransferase (AGAT) gene expression during recovery in these patients. The aim of this study was to evaluate the expression and role of AGAT expression in heart failure and recovery. Methods and Results— We used quantitative real time (TaqMan) polymerase chain reaction to examine myocardial AGAT mRNA expression in implant and explant samples from recovering patients after combination therapy (n=12), end-stage heart failure (ESHF) samples from stable patients undergoing transplantation without LVAD support (n=10), and donor hearts with normal hemodynamic function (n=8). AGAT mRNA expression was significantly elevated in all heart failure patients relative to donors (4.3-fold [P<0.001] and 2.7-fold [P<0.005] in LVAD and ESHF relative to donors, respectively) and returned to normal levels after recovery. AGAT enzyme activity was detectable in both human and rat myocardia and was elevated in heart failure. Conclusions— Our data highlight local and potentially regulated expression of AGAT activity in the myocardium and suggest a specific response to heart failure involving elevated local creatine synthesis. These findings have implications both for the management of recovery patients undergoing combination therapy and for heart failure in general.


Cardiovascular Research | 2008

Role and possible mechanisms of clenbuterol in enhancing reverse remodelling during mechanical unloading in murine heart failure

Gopal K. Soppa; Joon Lee; Mark A. Stagg; Leanne E. Felkin; Paul J.R. Barton; Urszula Siedlecka; Samuel Youssef; Magdi H. Yacoub; Cesare M. Terracciano

Abstract Aims Combined left ventricular assist device (LVAD) and pharmacological therapy has been proposed to favour myocardial recovery in patients with end-stage heart failure (HF). Clenbuterol (Clen), a β2-adrenoceptor (β2-AR) agonist, has been used as a part of this strategy. In this study, we investigated the direct effects of clenbuterol on unloaded myocardium in HF. Methods and results Left coronary artery ligation or sham operation was performed in male Lewis rats. After 4–6 weeks, heterotopic abdominal transplantation of the failing hearts into normal recipients was performed to induce LV unloading (UN). Recipient rats were treated with saline (Sal) or clenbuterol (2 mg/kg/day) via osmotic minipumps (HF + UN + Sal or HF + UN + Clen) for 7 days. Non-transplanted HF animals were treated with Sal (Sham + Sal, HF + Sal) or clenbuterol (HF + Clen). LV myocytes were isolated and studied using optical, fluorescence, and electrophysiological techniques. Clenbuterol treatment improved in vivo LV function measured with echocardiography (LVEF (%): HF 35.9 ± 2 [16], HF + Clen 52.1 ± 1.4 [16]; P < 0.001; mean ± SEM [n]). In combination with unloading, clenbuterol increased sarcomere shortening (amplitude (µm): HF + UN + Clen 0.1 ± 0.01 [50], HF + UN + Sal 0.07 ± 0.01 [38]; P < 0.001) by normalizing the depressed myofilament sensitivity to Ca2+ (slope of the linear relationship between Ca2+ transient and sarcomere shortening hysteresis loop during relaxation (μm/ratio unit): HF + UN + Clen 2.13 ± 0.2 [52], HF + UN + Sal 1.42 ± 0.13 [38]; P < 0.05). Conclusion Clenbuterol treatment of failing rat hearts, alone or in combination with mechanical unloading, improves LV function at the whole-heart and cellular levels by affecting cell morphology, excitation–contraction coupling, and myofilament sensitivity to calcium. This study supports the use of this drug in the strategy to enhance recovery in HF patients treated with LVADs and also begins to elucidate some of the possible cellular mechanisms responsible for the improvement in LV function.


Endocrinology | 2008

Expression of Follistatin-Related Genes Is Altered in Heart Failure

Enrique Lara-Pezzi; Leanne E. Felkin; E.J. Birks; Padmini Sarathchandra; Kalyani D. Panse; Robert S. George; Jennifer L. Hall; Magdi H. Yacoub; Nadia Rosenthal; Paul Barton

Follistatins play roles in diverse biological processes including cell proliferation, wound healing, inflammation, and skeletal muscle growth, yet their role in the heart is currently unknown. We have investigated the myocardial expression profile and cellular distribution of follistatin (FST) and the FST-like genes FSTL1 and FSTL3 in the normal and failing heart. Expression was further analyzed in the novel setting of recovery from heart failure in myocardium obtained from patients who received combined mechanical (left ventricular assist device) and pharmacological therapy. Real-time PCR revealed that FSTL1 and FSTL3 expression was elevated in heart failure but returned to normal after recovery. FSTL3 expression levels correlated with molecular markers of disease severity and FSTL1 with the endothelial cell marker CD31, suggesting a potential link with vascularization. FSTL1 levels before treatment correlated with cardiac function after recovery, suggesting initial levels may influence long-term outcome. Immunohistochemistry revealed that FST was primarily localized to fibroblasts and vascular endothelium within the heart, whereas FSTL1 was localized to myocytes, endothelium, and smooth muscle cells and FSLT3 to myocytes and endothelium. Microarray analysis revealed that FST and FSTL1 were associated with extracellular matrix-related and calcium-binding proteins, whereas FSTL3 was associated mainly with cell signaling and transcription. These data show for the first time that elevated myocardial expression of FST-like genes is a feature of heart failure and may be linked to both disease severity and mechanisms underlying recovery, revealing new insight into the pathogenesis of heart failure and offering novel therapeutic targets.


Journal of Heart and Lung Transplantation | 2003

Increased expression of extracellular matrix regulators TIMP1 and MMP1 in deteriorating heart failure

Paul J.R. Barton; E.J. Birks; Leanne E. Felkin; Martin E. Cullen; Maren U. Koban; Magdi H. Yacoub

BACKGROUND The authors previously identified and compared alterations in gene expression in the myocardia of patients with deteriorating heart failure who underwent left ventricular assist device (LVAD) implantation with those of patients with stable end-stage failure (ESF). We hypothesized that matrix metalloproteinases (MMPs) and their endogenous inhibitors, the tissue inhibitors of MMPs (TIMPs), would be implicated in the mechanisms that underlie deteriorating heart failure. METHODS Gridded macro-array filters were used to provide a broad overview of MMP and TIMP mRNA expression in heart failure. Precise mRNA levels of TIMP1, MMP1, and beta-spectrin were determined using quantitative real-time reverse-transcription polymerase chain reaction (RT-PCR) of myocardial samples from 27 patients with deteriorating heart failure who underwent LVAD implantation, from 17 patients with stable ESF who underwent elective heart transplantation, and from 28 donor organs with good hemodynamic function. RESULTS Gridded macro-arrays analysis of pooled failing heart samples determined that TIMP1 mRNA was the most readily detectable TIMP in failing myocardium. Quantitative RT-PCR showed that expression levels in individual patients were similar in patients with stable ESF (1.00 +/- 0.24, n = 17) and in donor organ samples (1.49 +/- 0.22, n = 28) but were significantly increased in the deteriorating heart failure group (5.38 +/- 0.32, n = 26, p < 0.0001 compared with patients with ESF). Similarly, MMP1 levels did not differ between donor and ESF groups but increased in the deteriorating failure group (6.04 +/- 0.50, n = 27, p < 0.001 compared with the ESF group). Levels of beta-II spectrin were the same in all 3 groups. Both TIMP1 and MMP1 showed positive correlation with each other and with previously determined levels of mRNA for both interleukin-1beta (IL-1beta) and IL-6 in this patient series when considering all patients individually, but neither correlated with tumor necrosis factor alpha. CONCLUSIONS Patients with deteriorating heart failure have increased expression of TIMP1 and MMP1 mRNA. Correlation with pro-inflammatory cytokines suggests common pathways of regulation and potential activation by IL-6 and IL1-beta.


Circulation Research | 2011

Telethonin Deficiency Is Associated With Maladaptation to Biomechanical Stress in the Mammalian Heart

Ralph Knöll; Wolfgang A. Linke; Peijian Zou; Snježana Miočic; Sawa Kostin; Byambajav Buyandelger; Ching Hsin Ku; Stefan Neef; Monika Bug; Katrin Schäfer; Gudrun Knöll; Leanne E. Felkin; Johannes Wessels; Karl Toischer; Franz Hagn; Horst Kessler; Michael Didié; Thomas Quentin; Lars S. Maier; Nils Teucher; Bernhard Unsöld; Albrecht Schmidt; E.J. Birks; Sylvia Gunkel; Patrick Lang; Henk Granzier; Wolfram-Hubertus Zimmermann; Loren J. Field; Georgine Faulkner; Matthias Dobbelstein

Rationale: Telethonin (also known as titin-cap or t-cap) is a 19-kDa Z-disk protein with a unique &bgr;-sheet structure, hypothesized to assemble in a palindromic way with the N-terminal portion of titin and to constitute a signalosome participating in the process of cardiomechanosensing. In addition, a variety of telethonin mutations are associated with the development of several different diseases; however, little is known about the underlying molecular mechanisms and telethonins in vivo function. Objective: Here we aim to investigate the role of telethonin in vivo and to identify molecular mechanisms underlying disease as a result of its mutation. Methods and Results: By using a variety of different genetically altered animal models and biophysical experiments we show that contrary to previous views, telethonin is not an indispensable component of the titin-anchoring system, nor is deletion of the gene or cardiac specific overexpression associated with a spontaneous cardiac phenotype. Rather, additional titin-anchorage sites, such as actin–titin cross-links via &agr;-actinin, are sufficient to maintain Z-disk stability despite the loss of telethonin. We demonstrate that a main novel function of telethonin is to modulate the turnover of the proapoptotic tumor suppressor p53 after biomechanical stress in the nuclear compartment, thus linking telethonin, a protein well known to be present at the Z-disk, directly to apoptosis (“mechanoptosis”). In addition, loss of telethonin mRNA and nuclear accumulation of this protein is associated with human heart failure, an effect that may contribute to enhanced rates of apoptosis found in these hearts. Conclusions: Telethonin knockout mice do not reveal defective heart development or heart function under basal conditions, but develop heart failure following biomechanical stress, owing at least in part to apoptosis of cardiomyocytes, an effect that may also play a role in human heart failure.


Circulation | 2005

Myocardial Insulin-Like Growth Factor-I Gene Expression During Recovery From Heart Failure After Combined Left Ventricular Assist Device and Clenbuterol Therapy

Paul J.R. Barton; Leanne E. Felkin; Emma J. Birks; Martin E. Cullen; Nicholas R. Banner; Suzanne Grindle; Jennifer L. Hall; Leslie W. Miller; Magdi H. Yacoub

Background—Patients who undergo mechanical support with a left ventricular assist device (LVAD) exhibit reverse remodeling and in some cases recover from heart failure. We have developed a combination therapy using LVAD support combined with pharmacological therapy to maximize reverse remodeling, followed by the β2 adrenergic agonist clenbuterol. We recently found that clenbuterol induces insulin-like growth factor I (IGF-I) in cardiac myocytes in vitro. The purpose of this study is to examine IGF-I expression in recovery patients after combination therapy. Methods and Results—Myocardial mRNA levels were determined by real-time quantitative polymerase chain reaction in 12 recovery patients (at LVAD implantation, explantation, and 1 year after explantation). IGF-I mRNA was elevated at the time of LVAD explantation relative to donors, with 2 groups distinguishable: Those with low IGF-I mRNA at implantation who showed significant increase during recovery and those with high IGF-I mRNA at implantation who remained high. Levels returned to normal by 1 year after explantation. Microarray analysis of implantation and explantation samples of recovery patients further revealed elevated IGF-II and IGF binding proteins IGFBP4 and IGFBP6. IGF-I levels correlated with stromal cell-derived factor mRNA measured both in LVAD patients and in a wider cohort of heart failure patients. Conclusions—The data suggest involvement of elevated myocardial IGF-I mRNA in recovery. IGF-I may act to limit atrophy and apoptosis during reverse remodeling and to promote repair and regeneration in concert with stromal cell derived factor.


PLOS ONE | 2008

Choice of cell-delivery route for skeletal myoblast transplantation for treating post-infarction chronic heart failure in rat

Satsuki Fukushima; Steven R. Coppen; Joon Lee; Kenichi Yamahara; Leanne E. Felkin; Cesare M. Terracciano; Paul J.R. Barton; Magdi H. Yacoub; Ken Suzuki

Background Intramyocardial injection of skeletal myoblasts (SMB) has been shown to be a promising strategy for treating post-infarction chronic heart failure. However, insufficient therapeutic benefit and occurrence of ventricular arrhythmias are concerns. We hypothesised that the use of a retrograde intracoronary route for SMB-delivery might favourably alter the behaviour of the grafted SMB, consequently modulating the therapeutic effects and arrhythmogenicity. Methods and Results Three weeks after coronary artery ligation in female wild-type rats, 5×106 GFP-expressing SMB or PBS only (control) were injected via either the intramyocardial or retrograde intracoronary routes. Injection of SMB via either route similarly improved cardiac performance and physical activity, associated with reduced cardiomyocyte-hypertrophy and fibrosis. Grafted SMB via either route were only present in low numbers in the myocardium, analysed by real-time PCR for the Y-chromosome specific gene, Sry. Cardiomyogenic differentiation of grafted SMB was extremely rare. Continuous ECG monitoring by telemetry revealed that only intramyocardial injection of SMB produced spontaneous ventricular tachycardia up to 14 days, associated with local myocardial heterogeneity generated by clusters of injected SMB and accumulated inflammatory cells. A small number of ventricular premature contractions with latent ventricular tachycardia were detected in the late-phase of SMB injection regardless of the injection-route. Conclusion Retrograde intracoronary injection of SMB provided significant therapeutic benefits with attenuated early-phase arrhythmogenicity in treating ischaemic cardiomyopathy, indicating the promising utility of this route for SMB-delivery. Late-phase arrhythmogenicity remains a concern, regardless of the delivery route.

Collaboration


Dive into the Leanne E. Felkin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrique Lara-Pezzi

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emma J. Birks

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Stuart A. Cook

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Ken Suzuki

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge