Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lech Zwierzchowski is active.

Publication


Featured researches published by Lech Zwierzchowski.


Molecular Biology Reports | 2012

Cathelicidins: family of antimicrobial peptides. A review

Ewa M. Kościuczuk; Paweł Lisowski; Justyna Jarczak; Nina Strzałkowska; Artur Jóźwik; Jarosław Horbańczuk; Józef Krzyżewski; Lech Zwierzchowski; Emilia Bagnicka

Cathelicidins are small, cationic, antimicrobial peptides found in humans and other species, including farm animals (cattle, horses, pigs, sheep, goats, chickens, rabbits and in some species of fish). These proteolytically activated peptides are part of the innate immune system of many vertebrates. These peptides show a broad spectrum of antimicrobial activity against bacteria, enveloped viruses and fungi. Apart from exerting direct antimicrobial effects, cathelicidins can also trigger specific defense responses in the host. Their roles in various pathophysiological conditions have been studied in mice and humans, but there are limited information about their expression sites and activities in livestock. The aim of the present review is to summarize current information about these antimicrobial peptides in farm animals, highlighting peptide expression sites, activities, and future applications for human and veterinary medicine.


Human Immunology | 2013

Defensins: Natural component of human innate immunity

Justyna Jarczak; Ewa M. Kościuczuk; Paweł Lisowski; Nina Strzałkowska; Artur Jóźwik; Jarosław Horbańczuk; Józef Krzyżewski; Lech Zwierzchowski; Emilia Bagnicka

The widespread use of antibiotics has contributed to a huge increase in the number of resistant bacteria. New classes of drugs are therefore being developed of which defensins are a potential source. Defensins are a group of antimicrobial peptides found in different living organisms, involved in the first line of defense in their innate immune response against pathogens. This review summarizes the results of studies of this family of human antimicrobial peptides (AMPs). There is a special emphasis on describing the entire group and individual peptides, history of their discovery, their functions and expression sites. The results of the recent studies on the use of the biologically active peptides in human medicine are also presented. The pharmaceutical potential of human defensins cannot be ignored, especially considering their strong antimicrobial activity and properties such as low molecular weight, reduced immunogenicity, broad activity spectrum and resistance to proteolysis, but there are still many challenges and questions regarding the possibilities of their practical application.


Journal of Applied Genetics | 2008

Evaluation of reference genes for studies of gene expression in the bovine liver, kidney, pituitary, and thyroid.

Paweł Lisowski; Mariusz Pierzchała; Joanna Gościk; Chandra S. Pareek; Lech Zwierzchowski

Expression patterns of candidate genes with important functions in animal metabolism can help to identify potential molecular markers for cattle production traits. Reverse transcription followed by polymerase chain reaction is a method for rapid and accurate mRNA quantification. However, for exact comparison of mRNA quantity in various samples or tissues, it is important to choose appropriate reference genes. In cattle, little information is available on the expression stability of housekeeping genes (HKGs). The aim of the present study is to develop a set of reference genes that can be used for normalization of concentrations of mRNAs of genes expressed in the bovine liver, kidney, pituitary and thyroid. The study was performed on 6-, 9-, and 12-month-old bulls of dairy and meat cattle breeds. Six HKGs were investigated:ACTB, GAPDH, HPRTI, SDHA, TBP, andYWHAZ. The most stably expressed potential reference HKGs differed among tissues/organs examined:ACTB, TBP, YWHAZ, GAPDH, HPR TI, andSDHA in the liver;GAPDH andYWHAZ in the kidney;GAPDH andSDHA in the pituitary; andTBP andHPRTI in the thyroid. The results showed that the use of a single gene fornormalization may lead to relatively large errors, so it is important to use multiple control genes based on a survey of potential reference genes applied to representative samples from specific experimental conditions.


Journal of Molecular Neuroscience | 2013

Effects of Chronic Stress on Prefrontal Cortex Transcriptome in Mice Displaying Different Genetic Backgrounds

Paweł Lisowski; Marek Wieczorek; Joanna Goscik; Grzegorz R. Juszczak; Adrian M. Stankiewicz; Lech Zwierzchowski; A H Swiergiel

There is increasing evidence that depression derives from the impact of environmental pressure on genetically susceptible individuals. We analyzed the effects of chronic mild stress (CMS) on prefrontal cortex transcriptome of two strains of mice bred for high (HA)and low (LA) swim stress-induced analgesia that differ in basal transcriptomic profiles and depression-like behaviors. We found that CMS affected 96 and 92 genes in HA and LA mice, respectively. Among genes with the same expression pattern in both strains after CMS, we observed robust upregulation of Ttr gene coding transthyretin involved in amyloidosis, seizures, stroke-like episodes, or dementia. Strain-specific HA transcriptome affected by CMS was associated with deregulation of genes involved in insulin secretion (Acvr1c, Nnat, and Pfkm), neuropeptide hormone activity (Nts and Trh), and dopamine receptor mediated signaling pathway (Clic6, Drd1a, and Ppp1r1b). LA transcriptome affected by CMS was associated with genes involved in behavioral response to stimulus (Fcer1g, Rasd2, S100a8, S100a9, Crhr1, Grm5, and Prkcc), immune effector processes (Fcer1g, Mpo, and Igh-VJ558), diacylglycerol binding (Rasgrp1, Dgke, Dgkg, and Prkcc), and long-term depression (Crhr1, Grm5, and Prkcc) and/or coding elements of dendrites (Crmp1, Cntnap4, and Prkcc) and myelin proteins (Gpm6a, Mal, and Mog). The results indicate significant contribution of genetic background to differences in stress response gene expression in the mouse prefrontal cortex.


BMC Veterinary Research | 2014

Expression patterns of β-defensin and cathelicidin genes in parenchyma of bovine mammary gland infected with coagulase-positive or coagulase-negative Staphylococci

Ewa M Kościuczuk; Paweł Lisowski; Justyna Jarczak; Józef Krzyżewski; Lech Zwierzchowski; Emilia Bagnicka

BackgroundMastitis is still considered to be the most economically important infectious disease in dairy cattle breeding. The immune response in mammary gland tissues could help in developing support strategies to combat this disease. The role of neutrophils and macrophages in the innate response of mammary gland is well known. However, the immune response in mammary gland tissues, including levels of antimicrobial peptide transcripts, has not been well recognized. Moreover, most studies are conducted in vitro, on cell cultures, or on artificially infected animals, with analysis being done within a several dozen hours after infection.The aim of the study was to examine the in vivo transcript levels of beta-defensin and cathelicidins genes in cow mammary gland secretory tissue (parenchyma) with the chronic, recurrent and incurable mammary gland inflammation induced by coagulase-positive or coagulase-negative Staphyloccoci vs. bacteria-free tissue.ResultsThe mRNA of DEFB1, BNBD4, BNBD5, BNBD10 and LAP genes, but not of TAP gene, were detected in all investigated samples regardless of the animals’ age and microbiological status of the mammary gland, but at different levels. The expression of most of the beta-defensin genes was shown to be much higher in tissues derived from udders infected with bacteria (CoPS or CoNS) than from bacteria-free udders, regardless of parity. Cathelicidins (CATH4, CATH5 and CATH6) showed expression patterns contrasting those of β-defensins, with the highest expression in tissues derived from bacteria-free udders.ConclusionIncreased expression of genes encoding β-defensins in the infected udder confirms their crucial role in the defense of the cow mammary gland against mastitis. On the other hand, the elevated cathelicidin transcripts in non-infected tissues indicate their role in the maintenance of healthy mammary tissues. The expression levels of investigated genes are likely to depend on the duration of the infection and type of bacteria.


European Neuropsychopharmacology | 2011

Effect of chronic mild stress on hippocampal transcriptome in mice selected for high and low stress-induced analgesia and displaying different emotional behaviors

Paweł Lisowski; Grzegorz R. Juszczak; Joanna Goscik; Marek Wieczorek; Lech Zwierzchowski; A H Swiergiel

There is increasing evidence that mood disorders may derive from the impact of environmental pressure on genetically susceptible individuals. Stress-induced hippocampal plasticity has been implicated in depression. We studied hippocampal transcriptomes in strains of mice that display high (HA) and low (LA) swim stress-induced analgesia and that differ in emotional behaviors and responses to different classes of antidepressants. Chronic mild stress (CMS) affected expression of a number of genes common for both strains. CMS also produced strain specific changes in expression suggesting that hippocampal responses to stress depend on genotype. Considerably larger number of genes, biological processes, molecular functions, biochemical pathways, and gene networks were affected by CMS in LA than in HA mice. The results suggest that potential drug targets against detrimental effects of stress include glutamate transporters, and cholinergic, cholecystokinin (CCK), glucocorticoids, and thyroid hormones receptors. Furthermore, some biological processes evoked by stress and different between the strains, such as apoptosis, neurogenesis and chromatin modifications, may be responsible for the long-term, irreversible effects of stress and suggest a role for epigenetic regulation of mood related stress responses.


Journal of Dairy Research | 2010

Association of polymorphisms in exons 2 and 10 of the insulin-like growth factor 2 ( IGF2 ) gene with milk production traits in Polish Holstein-Friesian cattle

Emilia Bagnicka; Eulalia Siadkowska; Nina Strzałkowska; Beata Żelazowska; Krzysztof Flisikowski; Józef Krzyżewski; Lech Zwierzchowski

Insulin-like growth factor 2 (IGF2) is considered to be a regulator of post-natal growth and differentiation of the mammary gland. In the present work, associations of two single nucleotide polymorphisms in the bovine IGF2 gene with milk production traits were studied in dairy Holstein-Friesian cows: the already described g.8656C>T transition in exon 2 (RFLP-BsrI) and the newly found g.24507G>T transversion in exon 10 (RFLP-HaeIII), found by sequencing 273-bp exon 10 of the IGF2 gene in six individuals. Associations were analysed individually and in combination with the multi-trait repeatability test-day animal model. The CT/GT haplotype appeared to be associated with most of the milk traits studied (differences were significant at P < or = 0.001). The most frequent CT/GG haplotype seemed inferior to others in fat and protein content and daily yield of fat and protein but superior (together with the TT/GG genotype) when the daily milk yield is considered.


Journal of Applied Genetics | 2009

Comparison of skeletal muscle transcriptional profiles in dairy and beef breeds bulls

Tomasz Sadkowski; Michał Jank; Lech Zwierzchowski; Jolanta Oprządek; Tomasz Motyl

A cDNA microarray (18 263 probes) was used for transcriptome analysis of bovine skeletal muscle (m. semitendinosus) in 12-month-old bulls of the beef breed Limousin (LIM) and the typical dairy breed Holstein-Friesian (HF, used as a reference). We aimed to identify the genes whose expression may reflect the muscle phenotype of beef bulls. A comparison of muscle transcriptional profiles revealed significant differences in expression of 393 genes between HF and LIM. We classified biological functions of 117 genes with over 2-fold differences in expression between the examined breeds. Among them, 72 genes were up-regulated and 45 genes were down-regulated in LIM vs. HF. The genes were involved in protein metabolism and modifications (22 genes), signal transduction (15), nucleoside, nucleotide and nucleic acid metabolism (13), cell cycle (9), cell structure and motility (9), developmental processes (9), intracellular protein traffic (7), cell proliferation and differentiation (6), cell adhesion (6), lipid, fatty acid and steroid metabolism (5), transport (5), and other processes. For the purpose of microarray data validation, we randomly selected 4 genes:trip12, mrps30, pycrl, andc-erbb3. Real-time RT-PCR results showed similar trends in gene expression changes as those observed in microarray studies. Basing on results of the present study, we proposed a model of the regulation of skeletal muscle growth and differentiation, with a principal role of the somatotropic pathway. It may explain at least in part the development of muscle phenotype in LIM bulls. We assume that the growth hormone directly or indirectly (through IGF-1) activates the calcium-signaling pathway with calcineurin, which stimulates myogenic regulatory factors (MRFs) and inhibits early growth response gene. The inhibition results in indirect activation of MRFs and impaired activation of TGF-beta1 and myostatin, which finally facilitates terminal muscle differentiation.


Journal of Applied Genetics | 2008

Gene expression profiling in skeletal muscle of Holstein-Friesian bulls with single-nucleotide polymorphism in the myostatin gene 5'-flanking region

Tomasz Sadkowski; Michał Jank; Lech Zwierzchowski; Eulalia Siadkowska; Jolanta Oprządek; Tomasz Motyl

Myostatin (GDF-8) is a key protein responsible for skeletal muscle growth and development, thus mutations in themstn gene can have major economic and breeding consequences. The aim of the present study was to investigate myostatin gene expression and transcriptional profile in skeletal muscle of Holstein-Friesian (Black-and-White) bulls carrying a polymorphism in the 5’-flanking region of themstn gene (G/C transversion at position -7828). Real-time qRT-PCR and cDNA microarray revealed significantly lowermstn expression in muscle of bulls with the CC genotype, as compared to GG and GC genotypes. The direct comparison of skeletal muscle transcriptional profiles between the CC genotype and GG and GC genotypes resulted in identification of genes, of which at least some can be putative targets for myostatin. Using cDNA microarray, we identified 43 common genes (includingmstn) with significantly different expression in skeletal muscle of bulls with the CC genotype, as compared to GG and GC genotypes, 15 of which were upregulated and 28 were downregulated in the CC genotype. Classification of molecular function of differentially expressed genes revealed the highest number of genes involved in the expression of cytoskeleton proteins (9), extracellular matrix proteins (4), nucleic acid-binding proteins (4), calcium-binding proteins (4), and transcription factors (4). The biological functions of the largest number of genes involved: protein metabolism and modification (10), signal transduction (10), cell structure (8), and developmental processes (8). The main identified signaling pathways were: Wnt (4), chemokines and cytokines (4), integrin (4), nicotine receptor for acetylocholine (3), TGF-beta (2), and cytoskeleton regulation by Rho GTPase (2). We identified previously unrecognized putatively myostatin-dependent genes, encoding transcription factors (EGR1, Nf1b, ILF1), components of the proteasomal complex (PSMB7, PSMD13) and proteins with some other molecular function in skeletal muscle (ITGB1BP3, Pla2g1b, ISYNA1, TNFAIP6, MST1, TNNT1, CALB3, CACYBP, and CTNNA1).


BMC Neuroscience | 2013

Stress susceptibility-specific phenotype associated with different hippocampal transcriptomic responses to chronic tricyclic antidepressant treatment in mice.

Paweł Lisowski; Grzegorz R. Juszczak; Joanna Goscik; Adrian M. Stankiewicz; Marek Wieczorek; Lech Zwierzchowski; Artur H. Swiergiel

BackgroundThe effects of chronic treatment with tricyclic antidepressant (desipramine, DMI) on the hippocampal transcriptome in mice displaying high and low swim stress-induced analgesia (HA and LA lines) were studied. These mice displayed different depression-like behavioral responses to DMI: stress-sensitive HA animals responded to DMI, while LA animals did not.ResultsTo investigate the effects of DMI treatment on gene expression profiling, whole-genome Illumina Expression BeadChip arrays and qPCR were used. Total RNA isolated from hippocampi was used. Expression profiling was then performed and data were analyzed bioinformatically to assess the influence of stress susceptibility-specific phenotypes on hippocampal transcriptomic responses to chronic DMI. DMI treatment affected the expression of 71 genes in HA mice and 41 genes in LA mice. We observed the upregulation of Igf2 and the genes involved in neurogenesis (HA: Sema3f, Ntng1, Gbx2, Efna5, and Rora; LA: Otx2, Rarb, and Drd1a) in both mouse lines. In HA mice, we observed the upregulation of genes involved in neurotransmitter transport, the termination of GABA and glycine activity (Slc6a11, Slc6a9), glutamate uptake (Slc17a6), and the downregulation of neuropeptide Y (Npy) and corticotropin releasing hormone-binding protein (Crhbp). In LA mice, we also observed the upregulation of other genes involved in neuroprotection (Ttr, Igfbp2, Prlr) and the downregulation of genes involved in calcium signaling and ion binding (Adcy1, Cckbr, Myl4, Slu7, Scrp1, Zfp330).ConclusionsSeveral antidepressant treatment responses are similar in individuals with different sensitivities to stress, including the upregulation of Igf2 and the genes involved in neurogenesis. However, the findings also reveal that many responses to antidepressant treatments, involving the action of individual genes engaged in neurogenesis, neurotransmitter transport and neuroprotection, depend on constitutive hippocampal transcriptomic profiles and might be genotype dependent. The results suggest that, when and if this becomes feasible, antidepressant treatment should take into consideration individual sensitivity to stress.

Collaboration


Dive into the Lech Zwierzchowski's collaboration.

Top Co-Authors

Avatar

Paweł Lisowski

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Emilia Bagnicka

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Andrzej Maj

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tadeusz Malewski

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Justyna Jarczak

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge