Leda Dimou
Ludwig Maximilian University of Munich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leda Dimou.
The Journal of Neuroscience | 2008
Leda Dimou; Christiane Simon; Frank Kirchhoff; Hirohide Takebayashi; Magdalena Götz
Despite their abundance, still little is known about the rather frequent, constantly proliferating progenitors spread throughout the adult mouse brain parenchyma. The majority of these progenitors express the basic-helix-loop-helix transcription factor Olig2, and their number further increases after injury. Here, we examine the progeny of this progenitor population by genetic fate mapping using tamoxifen-inducible Cre-recombination in the Olig2 locus to turn on permanent reporter gene expression in the adult brain. Consistent with Olig2 expression in proliferating NG2+ progenitors, most reporter+ cells seen shortly after initiating recombination at adult stages incorporated BrdU and contained the proteoglycan NG2 in both the gray (GM) and the white matter (WM) of the cerebral cortex. However, at longer time points after induction, we observed profound differences in the identity of reporter+ cells in the WM and GM. Whereas most of the Olig2+ progenitors had generated mature, myelinating oligodendrocytes in the WM, hardly any reporter+ cells showing mature oligodendrocyte characteristics were detectable even up to 6 months after recombination in the GM. In the GM, most reporter+ cells remained NG2+, even after injury, but stopped proliferating rather soon after recombination. Thus, our results demonstrate the continuous generation of mature, myelinating oligodendrocytes in the WM, whereas cells in the GM generated mostly postmitotic NG2+ glia.
Nature Neuroscience | 2013
Sophia Bardehle; Martin Krüger; Felix Buggenthin; Julia Schwausch; Jovica Ninkovic; Hans Clevers; Hugo J. Snippert; Fabian J. Theis; Melanie Meyer-Luehmann; Ingo Bechmann; Leda Dimou; Magdalena Götz
Astrocytes are thought to have important roles after brain injury, but their behavior has largely been inferred from postmortem analysis. To examine the mechanisms that recruit astrocytes to sites of injury, we used in vivo two-photon laser-scanning microscopy to follow the response of GFP-labeled astrocytes in the adult mouse cerebral cortex over several weeks after acute injury. Live imaging revealed a marked heterogeneity in the reaction of individual astrocytes, with one subset retaining their initial morphology, another directing their processes toward the lesion, and a distinct subset located at juxtavascular sites proliferating. Although no astrocytes actively migrated toward the injury site, selective proliferation of juxtavascular astrocytes was observed after the introduction of a lesion and was still the case, even though the extent was reduced, after astrocyte-specific deletion of the RhoGTPase Cdc42. Thus, astrocyte recruitment after injury relies solely on proliferation in a specific niche.
Glia | 2011
Christiane Simon; Magdalena Götz; Leda Dimou
The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and some mature oligodendrocytes. However, it is still largely unknown how proliferation and lineage decisions of these progenitors are regulated. Here, we first characterized the cell cycle length, proliferative fraction, and progeny of dividing cells in the adult cerebral cortex and then compared these proliferation characteristics after two distinct stimuli, invasive acute brain injury and increased physiological activity by voluntary physical exercise. Our data show that adult parenchymal progenitors have a very long cell cycle due to an extended G1 phase, many of them can divide at least twice and only a limited proportion of the progeny differentiates into mature oligodendrocytes. After stab wound injury, however, many of these progenitors re‐enter the cell cycle very fast, suggesting that the normally long G1 phase is subject to regulation and can be abruptly shortened. In striking contrast, voluntary physical exercise shows the opposite effect with increased exit of the cell cycle followed by an enhanced and fast differentiation into mature oligodendrocytes. Taken together, our data demonstrate that the endogenous population of adult brain parenchymal progenitors is subject to profound modulation by environmental stimuli in both directions, either faster proliferation or faster differentiation.
The Journal of Neuroscience | 2006
Leda Dimou; Lisa Schnell; Laura Montani; Carri S. Duncan; Marjo Simonen; Regula Schneider; Thomas Liebscher; Miriam Gullo; Martin E. Schwab
Nogo-A, a membrane protein enriched in myelin of the adult CNS, inhibits neurite growth and regeneration; neutralizing antibodies or receptor blockers enhance regeneration and plasticity in the injured adult CNS and lead to improved functional outcome. Here we show that Nogo-A-specific knock-outs in backcrossed 129X1/SvJ and C57BL/6 mice display enhanced regeneration of the corticospinal tract after injury. Surprisingly, 129X1/SvJ Nogo-A knock-out mice had two to four times more regenerating fibers than C57BL/6 Nogo-A knock-out mice. Wild-type newborn 129X1/SvJ dorsal root ganglia in vitro grew a much higher number of processes in 3 d than C57BL/6 ganglia, confirming the stronger endogenous neurite growth potential of the 129X1/SvJ strain. cDNA microarrays of the intact and lesioned spinal cord of wild-type as well as Nogo-A knock-out animals showed a number of genes to be differentially expressed in the two mouse strains; many of them belong to functional categories associated with neurite growth, synapse formation, and inflammation/immune responses. These results show that neurite regeneration in vivo, under the permissive condition of Nogo-A deletion, and neurite outgrowth in vitro differ significantly in two widely used mouse strains and that Nogo-A is an important endogenous inhibitor of axonal regeneration in the adult spinal cord.
Stem cell reports | 2014
Christophe Heinrich; Matteo Bergami; Sergio Gascón; Alexandra Lepier; Francesca Viganò; Leda Dimou; Bernd Sutor; Benedikt Berninger; Magdalena Götz
Summary The adult cerebral cortex lacks the capacity to replace degenerated neurons following traumatic injury. Conversion of nonneuronal cells into induced neurons has been proposed as an innovative strategy toward brain repair. Here, we show that retrovirus-mediated expression of the transcription factors Sox2 and Ascl1, but strikingly also Sox2 alone, can induce the conversion of genetically fate-mapped NG2 glia into induced doublecortin (DCX)+ neurons in the adult mouse cerebral cortex following stab wound injury in vivo. In contrast, lentiviral expression of Sox2 in the unlesioned cortex failed to convert oligodendroglial and astroglial cells into DCX+ cells. Neurons induced following injury mature morphologically and some acquire NeuN while losing DCX. Patch-clamp recording of slices containing Sox2- and/or Ascl1-transduced cells revealed that a substantial fraction of these cells receive synaptic inputs from neurons neighboring the injury site. Thus, NG2 glia represent a potential target for reprogramming strategies toward cortical repair.
Nature Cell Biology | 2013
Felipe Ortega; Sergio Gascón; Aditi Deshpande; Christiane Simon; Judith Fischer; Leda Dimou; D. Chichung Lie; Timm Schroeder; Benedikt Berninger
The adult mouse subependymal zone (SEZ) harbours adult neural stem cells (aNSCs) that give rise to neuronal and oligodendroglial progeny. However it is not known whether the same aNSC can give rise to neuronal and oligodendroglial progeny or whether these distinct progenies constitute entirely separate lineages. Continuous live imaging and single-cell tracking of aNSCs and their progeny isolated from the mouse SEZ revealed that aNSCs exclusively generate oligodendroglia or neurons, but never both within a single lineage. Moreover, activation of canonical Wnt signalling selectively stimulated proliferation within the oligodendrogliogenic lineage, resulting in a massive increase in oligodendrogliogenesis without changing lineage choice or proliferation within neurogenic clones. In vivo activation or inhibition of canonical Wnt signalling respectively increased or decreased the number of Olig2 and PDGFR- α positive cells, suggesting that this pathway contributes to the fine tuning of oligodendrogliogenesis in the adult SEZ.
Physiological Reviews | 2014
Leda Dimou; Magdalena Götz
The diverse functions of glial cells prompt the question to which extent specific subtypes may be devoted to a specific function. We discuss this by reviewing one of the most recently discovered roles of glial cells, their function as neural stem cells (NSCs) and progenitor cells. First we give an overview of glial stem and progenitor cells during development; these are the radial glial cells that act as NSCs and other glial progenitors, highlighting the distinction between the lineage of cells in vivo and their potential when exposed to a different environment, e.g., in vitro. We then proceed to the adult stage and discuss the glial cells that continue to act as NSCs across vertebrates and others that are more lineage-restricted, such as the adult NG2-glia, the most frequent progenitor type in the adult mammalian brain, that remain within the oligodendrocyte lineage. Upon certain injury conditions, a distinct subset of quiescent astrocytes reactivates proliferation and a larger potential, clearly demonstrating the concept of heterogeneity with distinct subtypes of, e.g., astrocytes or NG2-glia performing rather different roles after brain injury. These new insights not only highlight the importance of glial cells for brain repair but also their great potential in various aspects of regeneration.
The Journal of Neuroscience | 2008
Vincent Pernet; Sandrine Joly; Franziska Christ; Leda Dimou; Martin E. Schwab
Nogo-A is one of the most potent oligodendrocyte-derived inhibitors for axonal regrowth in the injured adult CNS. However, the physiological function of Nogo-A in development and in healthy oligodendrocytes is still unknown. In the present study, we investigated the role of Nogo-A for myelin formation in the developing optic nerve. By quantitative real-time PCR, we found that the expression of Nogo-A increased faster in differentiating oligodendrocytes than that of the major myelin proteins MBP (myelin basic protein), PLP (proteolipid protein)/DM20, and CNP (2′,3′-cyclic nucleotide 3′-phosphodiesterase). The analysis of optic nerves and cerebella of mice deficient for Nogo-A (Nogo-A−/−) revealed a marked delay of oligodendrocyte differentiation, myelin sheath formation, and axonal caliber growth within the first postnatal month. The combined deletion of Nogo-A and MAG caused a more severe transient hypomyelination. In contrast to MAG−/− mice, Nogo-A−/− mutants did not present abnormalities in the structure of myelin sheaths and Ranvier nodes. The common binding protein for Nogo-A and MAG, NgR1, was exclusively upregulated in MAG−/− animals, whereas the level of Lingo-1, a coreceptor, remained unchanged. Together, our results demonstrate that Nogo-A and MAG are differently involved in oligodendrocyte maturation in vivo, and suggest that Nogo-A may influence also remyelination in pathological conditions such as multiple sclerosis.
Journal of Biological Chemistry | 2009
Laura Montani; Bertran Gerrits; Peter Gehrig; Anissa Kempf; Leda Dimou; Bernd Wollscheid; Martin E. Schwab
Nogo-A has been extensively studied as a myelin-associated neurite outgrowth inhibitor in the lesioned adult central nervous system. However, its role in the intact central nervous system has not yet been clarified. Analysis of the intact adult nervous system of C57BL/6 Nogo-A knock-out (KO) versus wild-type (WT) mice by a combined two-dimensional gel electrophoresis and isotope-coded affinity tagging approach revealed regulation of cytoskeleton-, transport-, and signaling growth-related proteins, pointing to regulation of the actin cytoskeleton, the neuronal growth machinery, and in particular the Rho-GTPase/LIMK1/cofilin pathway. Nogo-A KO adult neurons showed enlarged, more motile growth cones compared with WT neurons. The phenotype was reproduced by acute in vitro neutralization of neuronal Nogo-A. LIMK1 phosphorylation was increased in Nogo-A KO growth cones, and its reduction caused the decrease of KO growth cone motility to WT levels. Our study suggests that in the unlesioned adult nervous system, neuronal Nogo-A can restrict neuronal growth through negative modulation of growth cone motility.
Neuron Glia Biology | 2010
Melanie Jawerka; Dilek Colak; Leda Dimou; Carmen Spiller; Sabine Lagger; Rusty L. Montgomery; Eric N. Olson; Wolfgang Wurst; Martin Göttlicher; Magdalena Götz
Gene expression changes during cell differentiation are thought to be coordinated by histone modifications, but still little is known about the role of specific histone deacetylases (HDACs) in cell fate decisions in vivo. Here we demonstrate that the catalytic function of HDAC2 is required in adult, but not embryonic neurogenesis. While brain development and adult stem cell fate were normal upon conditional deletion of HDAC2 or in mice lacking the catalytic activity of HDAC2, neurons derived from both zones of adult neurogenesis die at a specific maturation stage. This phenotype is correlated with an increase in proliferation and the aberrant maintenance of proteins normally expressed only in progenitors, such as Sox2, also into some differentiating neurons, suggesting that HDAC2 is critically required to silence progenitor transcripts during neuronal differentiation of adult generated neurons. This cell-autonomous function of HDAC2 exclusively in adult neurogenesis reveals clear differences in the molecular mechanisms regulating neurogenesis during development and in adulthood.