Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ledi Menabue is active.

Publication


Featured researches published by Ledi Menabue.


Acta Biomaterialia | 2009

Fluoride-containing bioactive glasses: surface reactivity in simulated body fluids solutions.

Gigliola Lusvardi; Gianluca Malavasi; Ledi Menabue; Valentina Aina; C. Morterra

The issue of the contribution of the addition of F to glass bioactivity is not well resolved. This work reports on the surface reactivity in different solutions (DMEM and Tris) for some potentially bioactive glasses based on the composition of 45S5 glass, in which CaF(2) is substituted alternately for (part of) CaO and Na(2)O. The reactivity of F-containing glasses has been compared with that of the reference 45S5 system. The aim of this study is to explain in detail the mechanism of formation of an apatitic crystalline phase at the interface between the inorganic material and simulated biological media. A multi-technique investigation approach proposes a set of reactions involving Ca-carbonate formation, which are somewhat different from that formerly proposed by Hench for 45S5 bioactive glass, and which occur when a F-containing glass surface is in contact with a SBF. The usefulness of IR spectroscopy in recognizing the starting step of apatite (and/or FA) formation with respect to XRD technique is well established here.


Acta Biomaterialia | 2011

Substitutions of cerium, gallium and zinc in ordered mesoporous bioactive glasses.

Antonio J. Salinas; Shruti Shruti; Gianluca Malavasi; Ledi Menabue; María Vallet-Regí

Ordered mesoporous glasses based on the 80% SiO(2)-15% CaO-5% P(2)O(5) system including up to 3.5% Ce(2)O(3), 3.5% Ga(2)O(3) or 7.0% ZnO (in mol.%) were synthesized by the evaporation-induced self-assembly process using Pluronic® 123 as a surfactant. An ordered hexagonal mesophase was observed in both the unsubstituted glass (denoted in this paper as B: blank) and glasses containing <0.4% of substituent by X-ray diffraction, transmission electron microscopy and electron diffraction. The increase in the amount of substituent led to a decrease in the mesopore order. B glass exhibited good textural properties: S(BET)=515m(2)g(-1), D(P)=4.7nm and V(P)=0.58cm(3)g(-1). With the inclusion of cerium, gallium and zinc oxides the textural properties decreased, but remained in amounts useful for clinical applications. Zinc-containing samples showed the highest decrement in the textural properties. Substituted glasses exhibited a quick in vitro bioactive response except when the ZnO content was over 0.4%. Taking into account the ordered mesoporosity, the quick in vitro bioactive response and the added values of the substituents, this new family of glasses are promising candidates for applications in bone tissue engineering.


Journal of Physical Chemistry B | 2008

Elucidation of the structural role of fluorine in potentially bioactive glasses by experimental and computational investigation.

Gigliola Lusvardi; Gianluca Malavasi; Cortada M; Ledi Menabue; Maria Cristina Menziani; Alfonso Pedone; Ulderico Segre

Glasses belonging to the Na(2)O-CaO-P(2)O(5)-SiO(2) system and modified by CaF(2) substitution for CaO and Na(2)O alternatively, were synthesized and characterized experimentally and computationally. The results of molecular dynamics simulations show that fluorine is almost exclusively bonded to modifier cations (Ca and Na) with coordination number close to 4. A similar mean coordination number value is found in the crystal phases obtained by means of thermal treatment at fixed temperature. Addition of fluorine increases the polymerization of silicate tetrahedra by removing modifiers from the siliceous matrix. No appreciable amount of Si-F bonds are detected.


Journal of Non-crystalline Solids | 2003

Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity

Cristina Leonelli; Gigliola Lusvardi; Gianluca Malavasi; Ledi Menabue; Massimo Tonelli

Abstract The results of preparation, characterization and in vitro bioactivity evaluation of phosphosilicate glasses based on Bioglass® 45S5 (SiO2 45; Na2O 24.5; CaO 24.5; P2O5 6 wt%) doped during melting with (1.5–13.5 wt%) cerium dioxide (CeO2), has been reported. The choice of cerium was related to its low toxicity associated with bacteriostatic properties; cerium-doped bioactive glasses could be useful when implantation concerns local infected areas. The maximum value that permitted forming a homogeneous glass was 13.5 wt% and enabled us to get a better insight into CeO2 effect on the chemical behaviour of glasses. The as-quenched glasses were characterized by means of magnetic and spectroscopic measurements that revealed the prevailing presence of cerium (III). The bioactivity of the glasses was tested by soaking them in a simulated body fluid at 37 °C, under continuous stirring. ICP measurements were carried out for ion concentration determinations and the solution/glass interface was investigated by scanning electron microscopy equipped with energy dispersive analyzer (SEM/EDS technique) to check morphological modifications; the solids were investigated by means of X-ray powder diffraction and IR techniques. The results indicated that at low cerium content the glass degradation and repolymerization gave rise to an internal silicon-based layer and an external calcium-phosphate-based layer formed on the glass surface; high cerium content retards the glass degradation and gave rise to cerium–phosphate layer instead of calcium one. The cerium was never found in solution. For the reacted glasses, in the external layer, at 10% and 13.5% CeO2 contents the molar ratio Ca/P were ≈1 and 0.8 respectively and the molar ratio Ce/P was ≈0.3 in both cases. On the surface of the glasses with the highest cerium content it could distinguish new regular aggregates mainly formed by cerium and phosphate (Ce/P≈3.5, Ca/P≈0.6). In the cerium-free glass and with low cerium content (1.5 wt%) the calculated Ca/P ratio was 1.67, as calculated for pure hydroxyapatite. At low cerium content (BG-1.5 Ce) the glass behaviour was strictly similar to that of Bioglass® 45S5.


Acta Biomaterialia | 2009

In vitro and in vivo behaviour of zinc-doped phosphosilicate glasses.

Gigliola Lusvardi; Davide Zaffe; Ledi Menabue; Carlo Bertoldi; Gianluca Malavasi; Ugo Consolo

The aim of this work was to study the behaviour of zinc-doped phosphosilicate glasses based on Bioglass 45S5. In vitro (in simulated body fluid), the reactivity was analysed by means of inductively coupled plasma spectrometry, environmental scanning electron microscopy-energy-dispersive spectroscopy (ESEM-EDS) and X-ray diffraction. In vivo (a rat implanted with glass), the reactivity and the tissue behaviour were analysed by conventional histology, histochemistry, microradiography and ESEM-EDS. The in vivo behaviour matches that in vitro perfectly; they show comparable glass degradation processes and rates, ruled by the amount of zinc in the glass. The reaction mechanism for the formation of a polymerized silica layer superimposed with a peripheral calcium phosphate layer is clearly substantiated by ESEM-EDS investigations. The crystallization of a biologically active hydroxyapatite (HA) layer is observed in both cases; the in vitro experiment shows the presence of HA after 4 days.


Acta Biomaterialia | 2013

Mesoporous bioactive scaffolds prepared with cerium-, gallium- and zinc-containing glasses

Shruti Shruti; Antonio J. Salinas; Gigliola Lusvardi; Gianluca Malavasi; Ledi Menabue; María Vallet-Regí

Mesoporous bioactive glass scaffolds (MBG_Scs), based on 80% SiO(2)-15% CaO-5% P(2)O(5) (in mol.%) mesoporous sol-gel glasses substituted with Ce(2)O(3), Ga(2)O(3) (both 0.2% or 1.0%) and ZnO (0.4% or 2.0%), were synthesized by combination of evaporation-induced self-assembly and rapid prototyping techniques. Cerium, gallium and zinc trace elements were selected because of their inherent beneficial biological properties. Fabricated scaffolds were characterized and compared with unsubstituted scaffold (B_Sc). All of them contained well interconnected ultralarge pores (pores >400 μm) ideal for vascular ingrowth and proliferation of cells. Macropores of size 100-400 μm were present inside the scaffolds. In addition, low-angle X-ray diffraction showed that B_Sc and scaffolds with substituent contents up to 0.4% exhibited ordered mesoporosity useful for hosting molecules with biological activity. The textural properties of B_Sc were a surface area of 398 m(2) g(-1), a pore diameter of 4.3 nm and a pore volume of 0.43 cm(3) g(-1). A slight decrease in surface area and pore volume was observed upon substitution with no distinct effect on pore diameter. In addition, all the MBG_Scs except 2.0% ZnO_Sc showed quite quick in vitro bioactive response. Hence, the present study is a positive addition to ongoing research into preparing bone tissue engineering scaffolds from bioceramics containing elements of therapeutic significance.


Waste Management | 2002

Removal of cadmium ion by means of synthetic hydroxyapatite.

Gigliola Lusvardi; Gianluca Malavasi; Ledi Menabue; Monica Saladini

The reaction behaviour of synthetic hydroxyapatite [Ca10(PO4)6(OH)2] (HAP) toward cadmium ion was investigated for the Cd/Ca molar ratio in the range 1-0.005, by means of ions, pH measurements and XRD, SEM, IR techniques. The reaction behaviour between HAP and cadmium ion could be explained by a formation of an amorphous phase and/or a sorption mechanism.


Journal of Biomaterials Applications | 2008

Properties of Zinc Releasing Surfaces for Clinical Applications

Gigliola Lusvardi; Gianluca Malavasi; Ledi Menabue; Maria Cristina Menziani; Alfonso Pedone; Ulderico Segre; Valentina Aina; Alessandra Perardi; C. Morterra; Francesca Boccafoschi; S. Gatti; M. Bosetti; Mario Cannas

Two series of glasses of general formula (2-p) SiO2·1.1Na 2O·CaO·pP2O5·xZnO (p=0.10, 0.20; x=0.0, 0.16, 0.35, and 0.78) have been analyzed for physico-chemical surface features before and after contact with simulated body fluid, morphological characteristics, and osteoblast-like cells behavior when cultured on them. The resulted good cell adhesion and growth, along with nonsignificant changes of the focal contacts, allow the authors to indicate HZ5 and HP5Z5 glasses as the ones having optimal ratio of Zn/P to maintain acceptable cell behavior, comparable to the bioactive glass (Bioglass®) used as a control; results are also rationalized by means of three-dimensional models derived by molecular dynamic simulations, with decomposition and conversion rates optimized with respect to the parent Henchs Bioglass®.


Journal of Materials Chemistry | 2012

Structural and in vitro study of cerium, gallium and zinc containing sol–gel bioactive glasses

Shruti Shruti; Antonio J. Salinas; Gianluca Malavasi; Gigliola Lusvardi; Ledi Menabue; Chiara Ferrara; Piercarlo Mustarelli; María Vallet-Regí

Sol–gel derived glasses comprised of bioactive materials exhibit a high in vitro response, i.e., the capability to form a hydroxycarbonate apatite (HCA) layer that is claimed to be responsible for the bonding between the glass and the host bone. In this paper, the sol–gel bioactive glass 80% SiO2–15% CaO–5% P2O5 (B_BG) was modified by adding the biologically relevant elements cerium, gallium and zinc. Structural characterization of the glasses was performed by 29Si MAS NMR and their in vitro response was investigated by soaking them in simulated body fluid (SBF) for up to 15 days at 37 °C. The HCA formation was monitored by XRD, FTIR, SEM-EDS and ICP measurements. Ce3+, Ga3+, and Zn2+ can be classified as “intermediate ions”. However, 29Si NMR revealed that Ce3+ ions have a more marked role of “modifier ions” than Ga3+ ions, while the behavior of Zn2+ lies between those of Ce3+ and Ga3+. On the other hand, in spite of the decrease in the in vitro response of B_BG by substitution, the glasses show HCA formation after 15 days of soaking. In addition, an increase in substitution of zinc accelerated the formation of HCA along with the formation of the mixed phase CaZn2(PO4)2·2H2O (scholzite) acting as nucleating agent for HCA. Moreover, the therapeutic effect of optimum Zn released as an ionic dissolution product from Zn-glasses could be beneficial to stimulate osteogenesis.


Inorganica Chimica Acta | 1995

Crystal structure of lead hydroxyapatite from powder X-ray diffraction data

Sergio Brückner; Gigliola Lusvardi; Ledi Menabue; Monica Saladini

Abstract The crystal structure of lead hydroxyapatite, Pb10(PO4)6(OH)2, is refined on powder XRD data using the Rietveld method. The unit cell is hexagonal, a=b=9.866(3) and c=7.426(2) A , space group P63/m, Z=1 (relative to the specified formula). Results are discussed and compared with previous structures of hydroxyapatite and partially lead-substituted hydroxyatites. Now that the entire range of lead substitution is covered, it is possible to detect a coherent trend in the distortions of the crystal packing introduced by the different ability of the two metallic crystal sites to accommodate Pb ions.

Collaboration


Dive into the Ledi Menabue's collaboration.

Top Co-Authors

Avatar

Gian Carlo Pellacani

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Monica Saladini

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gigliola Lusvardi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gianluca Malavasi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Sola

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Anna Bonamartini Corradi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge