Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lee-Ann Jaykus is active.

Publication


Featured researches published by Lee-Ann Jaykus.


Journal of Food Protection | 2006

Surrogates for the Study of Norovirus Stability and Inactivation in the Environment: A Comparison of Murine Norovirus and Feline Calicivirus

Jennifer L. Cannon; Efstathia Papafragkou; Geunwoo W. Park; Jason Osborne; Lee-Ann Jaykus; Jan Vinjé

Human noroviruses (NoVs) are the leading cause of food- and waterborne outbreaks of acute nonbacterial gastroenteritis worldwide. As a result of the lack of a mammalian cell culture model for these viruses, studies on persistence, inactivation, and transmission have been limited to cultivable viruses, including feline calicivirus (FCV). Recently, reports of the successful cell culture of murine norovirus 1 (MNV-1) have provided investigators with an alternative surrogate for human NoVs. In this study, we compared the inactivation profiles of MNV-1 to FCV in an effort to establish the relevance of MNV-1 as a surrogate virus. Specifically, we evaluated (i) stability upon exposure to pH extremes; (ii) stability upon exposure to organic solvents; (iii) thermal inactivation; and (iv) surface persistence under wet and dry conditions. MNV-1 was stable across the entire pH range tested (pH 2 to 10) with less than 1 log reduction in infectivity at pH 2, whereas FCV was inactivated rapidly at pH values < 3 and > 9. FCV was more stable than MNV-1 at 56 degrees C, but both viruses exhibited similar inactivation at 63 and 72 degrees C. Long-term persistence of both viruses suspended in a fecal matrix and inoculated onto stainless steel coupons were similar at 4 degrees C, but at room temperature in solution, MNV-1 was more stable than FCV. The genetic relatedness of MNV-1 to human NoVs combined with its ability to survive under gastric pH levels makes this virus a promising and relevant surrogate for studying environmental survival of human NoVs.


Critical Reviews in Microbiology | 2004

Bacterial separation and concentration from complex sample matrices: a review.

Kelly A. Stevens; Lee-Ann Jaykus

The use of many rapid detection technologies could be expanded if the bacteria were separated, concentrated, and purified from the sample matrix before detection. Specific advantages of bacterial concentration might include facilitating the detection of multiple bacterial strains; removal of matrix-associated assay inhibitors; and provision of adequate sample size reduction to allow for the use of representative food sample sizes and/or small media volumes. Furthermore, bacterial concentration could aid in improving sampling techniques needed to detect low levels of pathogens or sporadic contamination, which may perhaps reduce or even eliminate the need for cultural enrichment prior to detection. Although bacterial concentration methods such as centrifugation, filtration, and immunomagnetic separation have been reported for food systems, none of these is ideal and in many cases a technique optimized for one food system or microorganism is not readily adaptable to others. Indeed, the separation and subsequent concentration of bacterial cells from a food sample during sample preparation continues to be a stumbling block in the advancement of molecular methods for the detection of foodborne pathogens. The purpose of this review is to provide a detailed understanding of the science, possibilities, and limitations of separating and concentrating bacterial cells from the food matrix in an effort to further improve our ability to harness molecular methods for the rapid detection of foodborne pathogens.


Journal of Food Protection | 2005

A Field Study of the Microbiological Quality of Fresh Produce

Lynette M. Johnston; Lee-Ann Jaykus; Deborah Moll; Martha C. Martinez; Juan Anciso; Brenda Mora; Christine L. Moe

The Centers for Disease Control and Prevention has reported that foodborne disease outbreaks associated with fruits and vegetables increased during the past decade. This study was conducted to characterize the routes of microbial contamination in produce and to identify areas of potential contamination from production through postharvest handling. We report here the levels of bacterial indicator organisms and the prevalence of selected pathogens in produce samples collected from the southern United States. A total of 398 produce samples (leafy greens, herbs, and cantaloupe) were collected through production and the packing shed and assayed by enumerative tests for total aerobic bacteria, total coliforms, total Enterococcus, and Escherichia coli. These samples also were analyzed for Salmonella, Listeria monocytogenes, and E. coli O157:H7. Microbiological methods were based on methods recommended by the U.S. Food and Drug Administration. For all leafy greens and herbs, geometric mean indicator levels ranged from 4.5 to 6.2 log CFU/g (aerobic plate count); less than 1 to 4.3 log CFU/g (coliforms and Enterococcus); and less than 1 to 1.5 log CFU/g (E. coli). In many cases, indicator levels remained relatively constant throughout the packing shed, particularly for mustard greens. However, for cilantro and parsley, total coliform levels increased during the packing process. For cantaloupe, microbial levels significantly increased from field through packing, with ranges of 6.4 to 7.0 log CFU/g (aerobic plate count); 2.1 to 4.3 log CFU/g (coliforms); 3.5 to 5.2 log CFU/g (Enterococcus); and less than 1 to 2.5 log CFU/g (E. coli). The prevalence of pathogens for all samples was 0, 0, and 0.7% (3 of 398) for L. monocytogenes, E. coli O157:H7, and Salmonella, respectively. This study demonstrates that each step from production to consumption may affect the microbial load of produce and reinforces government recommendations for ensuring a high-quality product.


Molecular and Cellular Probes | 2009

Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars

Raghavendra Joshi; Harish K. Janagama; Hari P. Dwivedi; T. M A Senthil Kumar; Lee-Ann Jaykus; Jeremy Schefers; Srinand Sreevatsan

Sensitive and specific pre-analytical sample processing methods are needed to enhance our ability to detect and quantify food borne pathogens from complex food and environmental samples. In this study, DNA aptamers were selected and evaluated for the capture and detection of Salmonella enterica serovar. Typhimurium. A total of 66 candidate sequences were enriched against S. Typhimurium outer membrane proteins (OMPs) with counter-selection against Escherichia coli OMPs and lipopolysaccharides (LPS). Specificity of the selected aptamers was evaluated by gel-shift analysis against S. Typhimurium OMP. Five Salmonella-specific aptamer candidates were selected for further characterization. A dilution-to-extinction capture protocol using pure cultures of S. Typhimurium further narrowed the field to two candidates (aptamers 33 and 45) which showed low-end detection limits of 10-40CFU. DNase protection assays applied to these aptamers confirmed sequence-specific binding to S. Typhimurium OMP preparations, while South-Western blot analysis combined with mass spectrometry identified putative membrane proteins as targets for aptamer binding. Aptamer 33 was bound to magnetic beads and used for the capture of S. Typhimurium seeded into whole carcass chicken rinse samples, followed by detection using quantitative real-time RT-PCR. In a pull-down assay format, detection limits were 10(1)-10(2)CFU S. Typhimurium/9mL rinsate, while in a recirculation format, detection limits were 10(2)-10(3)CFU/25mL rinsate. Reproducible detection at <10(1)S. typhimurium CFU/g was also achieved in spike-and-recovery experiments using bovine feces. The pull-down analysis using aptamer 33 was validated on 3 naturally infected chicken litter samples confirming their applicability in the field. This study demonstrates the applicability of Salmonella specific aptamers for pre-analytical sample processing as applied to food and environmental sample matrices.


Journal of Bacteriology | 2008

Determination of Molecular Phylogenetics of Vibrio parahaemolyticus Strains by Multilocus Sequence Typing

Narjol Gonzalez-Escalona; Jaime Martinez-Urtaza; Jaime Romero; Romilio T. Espejo; Lee-Ann Jaykus; Angelo DePaola

Vibrio parahaemolyticus is an important human pathogen whose transmission is associated with the consumption of contaminated seafood. There is a growing public health concern due to the emergence of a pandemic strain causing severe outbreaks worldwide. Many questions remain unanswered regarding the evolution and population structure of V. parahaemolyticus. In this work, we describe a multilocus sequence typing (MLST) scheme for V. parahaemolyticus based on the internal fragment sequences of seven housekeeping genes. This MLST scheme was applied to 100 V. parahaemolyticus strains isolated from geographically diverse clinical (n = 37) and environmental (n = 63) sources. The sequences obtained from this work were deposited and are available in a public database (http://pubmlst.org/vparahaemolyticus). Sixty-two unique sequence types were identified, and most (50) were represented by a single isolate, suggesting a high level of genetic diversity. Three major clonal complexes were identified by eBURST analysis. Separate clonal complexes were observed for V. parahaemolyticus isolates originating from the Pacific and Gulf coasts of the United States, while a third clonal complex consisted of strains belonging to the pandemic clonal complex with worldwide distribution. The data reported in this study indicate that V. parahaemolyticus is genetically diverse with a semiclonal population structure and an epidemic structure similar to that of Vibrio cholerae. Genetic diversity in V. parahaemolyticus appears to be driven primarily by frequent recombination rather than mutation, with recombination ratios estimated at 2.5:1 and 8.8:1 by allele and site, respectively. Application of this MLST scheme to more V. parahaemolyticus strains and by different laboratories will facilitate production of a global picture of the epidemiology and evolution of this pathogen.


Critical Reviews in Microbiology | 2011

Detection of pathogens in foods: the current state-of-the-art and future directions

Hari P. Dwivedi; Lee-Ann Jaykus

Over the last fifty years, microbiologists have developed reliable culture-based techniques to detect food borne pathogens. Although these are considered to be the “gold-standard,” they remain cumbersome and time consuming. Despite the advent of rapid detection methods such as ELISA and PCR, it is clear that reduction and/or elimination of cultural enrichment will be essential in the quest for truly real-time detection methods. As such, there is an important role for bacterial concentration and purification from the sample matrix as a step preceding detection, so-called pre-analytical sample processing. This article reviews recent advancements in food borne pathogen detection and discusses future methods with a focus on pre-analytical sample processing, culture independent methods, and biosensors.


Journal of Virological Methods | 2002

Improved detection of human enteric viruses in foods by RT-PCR.

Arnie Sair; Doris H. D'Souza; Christine L. Moe; Lee-Ann Jaykus

Human enteric viruses (including hepatitis A virus (HAV) and Norwalk-like viruses (NLVs)) are now recognized as common causes of foodborne disease. While methods to detect these agents in clinical specimens have improved significantly over the last 10 years, applications to food samples have progressed more slowly. In an effort to improve the sensitivity and speed of virus detection from non-shellfish food commodities by reverse transcription-polymerase chain reaction (RT-PCR), we (i) evaluated multiple RNA extraction methods; (ii) compared alternative NLV primer sets; and (iii) developed a one-step RT-PCR method. Hamburger and lettuce samples, processed for virus concentration using a previously reported filtration-extraction-precipitation procedure, were inoculated with HAV or NV. Several RNA extraction methods (guanidinium isothiocyanate, microspin column, QIAshredder Homogenizer, and TRIzol) and primer pairs were compared for overall RNA yield (microg/ml), purity (A(260)/A(280)), and RT-PCR limits of detection. The use of TRIzol with the QIAshredder Homogenizer (TRIzol/Shred) yielded the best RT-PCR detection limits (<1 RT-PCR amplifiable units/reaction for NV), and the NVp110/NVp36 primer set was the most efficient for detecting NV from seeded food samples. A one-step RT-PCR protocol using the TRIzol/Shred extraction method and the NVp110/NVp36 or HAV3/HAV5 primer sets demonstrated improved sensitivity (>10-fold) over the routinely used two-step method. HAV RNA was detected by RT-PCR at initial inoculum levels corresponding to <10 and <100 PFU per 300 microl sample concentrate (corresponding to 6 g food sample) for hamburger and lettuce, respectively. NV RNA was detected by RT-PCR at initial inoculum levels <5 and <50 RT-PCR amplifiable units per 300 microl concentrate (corresponding to 6 g food sample) for hamburger and lettuce, respectively. Residual RT-PCR inhibitors were effectively removed as evidenced by the ability to detect viral RNA in food concentrates without prior dilution. The methods reported here show promise for rapid, sensitive detection of human enteric viruses in foods.


Applied and Environmental Microbiology | 2010

Effectiveness of Liquid Soap and Hand Sanitizer against Norwalk Virus on Contaminated Hands

Pengbo Liu; Yvonne Yuen; Hui-Mien Hsiao; Lee-Ann Jaykus; Christine L. Moe

ABSTRACT Disinfection is an essential measure for interrupting human norovirus (HuNoV) transmission, but it is difficult to evaluate the efficacy of disinfectants due to the absence of a practicable cell culture system for these viruses. The purpose of this study was to screen sodium hypochlorite and ethanol for efficacy against Norwalk virus (NV) and expand the studies to evaluate the efficacy of antibacterial liquid soap and alcohol-based hand sanitizer for the inactivation of NV on human finger pads. Samples were tested by real-time reverse transcription-quantitative PCR (RT-qPCR) both with and without a prior RNase treatment. In suspension assay, sodium hypochlorite concentrations of ≥160 ppm effectively eliminated RT-qPCR detection signal, while ethanol, regardless of concentration, was relatively ineffective, giving at most a 0.5 log10 reduction in genomic copies of NV cDNA. Using the American Society for Testing and Materials (ASTM) standard finger pad method and a modification thereof (with rubbing), we observed the greatest reduction in genomic copies of NV cDNA with the antibacterial liquid soap treatment (0.67 to 1.20 log10 reduction) and water rinse only (0.58 to 1.58 log10 reduction). The alcohol-based hand sanitizer was relatively ineffective, reducing the genomic copies of NV cDNA by only 0.14 to 0.34 log10 compared to baseline. Although the concentrations of genomic copies of NV cDNA were consistently lower on finger pad eluates pretreated with RNase compared to those without prior RNase treatment, these differences were not statistically significant. Despite the promise of alcohol-based sanitizers for the control of pathogen transmission, they may be relatively ineffective against the HuNoV, reinforcing the need to develop and evaluate new products against this important group of viruses.


Journal of Food Protection | 2000

Detection methods for human enteric viruses in representative foods.

Paris R. Leggitt; Lee-Ann Jaykus

Although viral foodborne disease is a significant problem, foods are rarely tested for viral contamination, and when done, testing is limited to shellfish commodities. In this work, we report a method to extract and detect human enteric viruses from alternative food commodities using an elution-concentration approach followed by detection using reverse transcription-polymerase chain reaction (RT-PCR). Fifty-gram lettuce or hamburger samples were artificially inoculated with poliovirus type 1 (PV1), hepatitis A virus (HAV), or the Norwalk virus and processed by the sequential steps of homogenization, filtration, Freon extraction (hamburger), and polyethylene glycol (PEG) precipitation. To reduce volumes further and remove RT-PCR inhibitors, a secondary PEG precipitation was necessary, resulting in an overall 10- to 20-fold sample size reduction from 50 g to 3 to 5 ml. Virus recoveries in secondary PEG concentrates ranged from 10 to 70% for PV1 and 2 to 4% for HAV as evaluated by mammalian cell culture infectivity assay. Total RNA from PEG concentrates was extracted to a small volume (30 to 40 microl) and subjected to RT-PCR amplification of viral RNA sequences. Detection limit studies indicated that viral RNA was consistently detected by RT-PCR at initial inoculum levels > or =102 PFU/50-g food sample for PV1 and > or =10(3) PFU/50-g food sample for HAV. In similar studies with the Norwalk virus, detection at inoculum levels > or =1.5 X 10(3) PCR-amplifiable units/50-g sample for both food products was possible. All RT-PCR amplicons were confirmed by subsequent Southern hybridization. The procedure reported represents progress toward the development of methods to detect human enteric viral contamination in foods other than shellfish.


Journal of Food Protection | 2009

Sample Preparation: The Forgotten Beginning

Byron F. Brehm-Stecher; Charles Young; Lee-Ann Jaykus; Mary Lou Tortorello

Advances in molecular technologies and automated instrumentation have provided many opportunities for improved detection and identification of microorganisms; however, the upstream sample preparation steps needed to apply these advances to foods have not been adequately researched or developed. Thus, the extent to which these advances have improved food microbiology has been limited. The purpose of this review is to present the current state of sample preparation, to identify knowledge gaps and opportunities for improvement, and to recognize the need to support greater research and development efforts on preparative methods in food microbiology. The discussion focuses on the need to push technological developments toward methods that do not rely on enrichment culture. Among the four functional components of microbiological analysis (i.e., sampling, separation, concentration, detection), the separation and concentration components need to be researched more extensively to achieve rapid, direct, and quantitative methods. The usefulness of borrowing concepts of separation and concentration from other disciplines and the need to regard the microorganism as a physicochemical analyte that may be directly extracted from the food matrix are discussed. The development of next-generation systems that holistically integrate sample preparation with rapid, automated detection will require interdisciplinary collaboration and substantially increased funding.

Collaboration


Dive into the Lee-Ann Jaykus's collaboration.

Top Co-Authors

Avatar

Matthew D. Moore

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doris H. D'Souza

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

M.A. Drake

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Peter Cowen

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina M. Moore

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Hari P. Dwivedi

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge