Lee-Ann K. Briere
University of Western Ontario
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lee-Ann K. Briere.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Kenrick A. Vassall; Helen R. Stubbs; Heather A. Primmer; Ming Sze Tong; Sarah M. Sullivan; Ryan Sobering; Saipraveen Srinivasan; Lee-Ann K. Briere; Stanley D. Dunn; Wilfredo Colón; Elizabeth M. Meiering
Protein aggregation is a hallmark of many diseases, including amyotrophic lateral sclerosis (ALS), where aggregation of Cu/Zn superoxide dismutase (SOD1) is implicated in causing neurodegeneration. Recent studies have suggested that destabilization and aggregation of the most immature form of SOD1, the disulfide-reduced, unmetallated (apo) protein is particularly important in causing ALS. We report herein in depth analyses of the effects of chemically and structurally diverse ALS-associated mutations on the stability and aggregation of reduced apo SOD1. In contrast with previous studies, we find that various reduced apo SOD1 mutants undergo highly reversible thermal denaturation with little aggregation, enabling quantitative thermodynamic stability analyses. In the absence of ALS-associated mutations, reduced apo SOD1 is marginally stable but predominantly folded. Mutations generally result in slight decreases to substantial increases in the fraction of unfolded protein. Calorimetry, ultracentrifugation, and light scattering show that all mutations enhance aggregation propensity, with the effects varying widely, from subtle increases in most cases, to pronounced formation of 40–100 nm soluble aggregates by A4V, a mutation that is associated with particularly short disease duration. Interestingly, although there is a correlation between observed aggregation and stability, there is minimal to no correlation between observed aggregation, predicted aggregation propensity, and disease characteristics. These findings suggest that reduced apo SOD1 does not play a dominant role in modulating disease. Rather, additional and/or multiple forms of SOD1 and additional biophysical and biological factors are needed to account for the toxicity of mutant SOD1 in ALS.
Journal of Biomedical Materials Research Part A | 2010
Jan-M. Brandt; Lee-Ann K. Briere; J. Marr; Steven J. MacDonald; Robert B. Bourne; John B. Medley
Osteoarthritic human synovial fluid was obtained from the knees of 20 patients and was compared with four different calf sera solutions frequently used as lubricants in knee simulator wear testing. Assuming that the fluid after arthroplasty was the same as the fluid in patients with osteoarthritis, the total protein concentration, protein constituent fractions, osmolality, trace element concentrations, and the thermal stability obtained via differential scanning calorimetry were determined. Human synovial fluid, with an average total protein concentration of 34 g/L, was significantly different from all undiluted calf sera. However, alpha-calf serum and iron-supplemented alpha-calf serum were closest in protein constituent fractions (albumin, alpha-1-globulin, alpha-2-globulin, ss-globulin, and gamma-globulin) to human synovial fluid. Diluting calf sera with low-ion distilled water to a total protein concentration of 17 g/L (as recommended by ISO 14243) produced non-clinically relevant total protein concentration and osmolality levels. Performing the same dilution of iron-supplemented alpha-calf serum with phosphate-buffered saline solution and 1.5 g/L hyaluronic acid produced an artificial lubricant with both a clinically relevant level of osmolality and clinically relevant thermal stability as seen in human synovial fluid from patients with osteoarthritis. The present study suggested that alpha-calf serum, phosphate-buffered saline solution and hyaluronic acid were essential constituents of an artificial lubricant to mimic the major biochemical properties of human synovial fluid for simulator wear testing of total knee replacements.
Biochemistry | 2014
Krzysztof J. Podkowa; Lee-Ann K. Briere; David E. Heinrichs; Brian H. Shilton
Iron acquisition is a central process for virtually all organisms. In Staphylococcus aureus, FhuD2 is a lipoprotein that is a high-affinity receptor for iron-bound hydroxamate siderophores. In this study, FhuD2 was crystallized bound to ferrioxamine-B (FXB), and also in its ligand-free state; the latter structures are the first for hydroxamate-binding receptors within this protein family. The structure of the FhuD2-FXB conformation shows that residues W197 and R199 from the C-terminal domain donate hydrogen bonds to the hydroxamate oxygens, and a ring of aromatic residues cradles the aliphatic arms connecting the hydroxamate moieties of the siderophore. The available ligand-bound structures of FhuD from Escherichia coli and YfiY from Bacillus cereus show that, despite a high degree of structural conservation, three protein families have evolved with critical siderophore binding residues on either the C-terminal domain (S. aureus), the N-terminal domain (E. coli), or both (B. cereus). Unliganded FhuD2 was crystallized in five conformations related by rigid body movements of the N- and C-terminal domains. Small-angle X-ray scattering (SAXS) indicates that the solution conformation of unliganded FhuD2 is more compact than the conformations observed in crystals. The ligand-induced conformational changes for FhuD2 in solution are relatively modest and depend on the identity of the siderophore. The crystallographic and SAXS results are used to discuss roles for the liganded and unliganded forms of FhuD2 in the siderophore transport mechanism.
Biochimica et Biophysica Acta | 2008
Yumin Bi; Joel C. Watts; Pamela Krauss Bamford; Lee-Ann K. Briere; Stanley D. Dunn
A dimer of 156-residue b subunits forms the peripheral stator stalk of eubacterial ATP synthase. Dimerization is mediated by a sequence with an unusual 11-residue (hendecad) repeat pattern, implying a right-handed coiled coil structure. We investigated the potential for producing functional chimeras in the b subunit of Escherichia coli ATP synthase by replacing parts of its sequence with corresponding regions of the b subunits from other eubacteria, sequences from other polypeptides having similar hendecad patterns, and sequences forming left-handed coiled coils. Replacement of positions 55-110 with corresponding sequences from Bacillus subtilis and Thermotoga maritima b subunits resulted in fully functional chimeras, judged by support of growth on nonfermentable carbon sources. Extension of the T. maritima sequence N-terminally to position 37 or C-terminally to position 124 resulted in slower but significant growth, indicating retention of some capacity for oxidative phosphorylation. Portions of the dimerization domain between 55 and 95 could be functionally replaced by segments from two other proteins having a hendecad pattern, the distantly related E subunit of the Chlamydia pneumoniae V-type ATPase and the unrelated Ag84 protein of Mycobacterium tuberculosis. Extension of such sequences to position 110 resulted in loss of function. None of the chimeras that incorporated the leucine zipper of yeast GCN4, or other left-handed coiled coils, supported oxidative phosphorylation, but substantial ATP-dependent proton pumping was observed in membrane vesicles prepared from cells expressing such chimeras. Characterization of chimeric soluble b polypeptides in vitro showed their retention of a predominantly helical structure. The T. maritima b subunit chimera melted cooperatively with a midpoint more than 20 degrees C higher than the normal E. coli sequence. The GCN4 construct melted at a similarly high temperature, but with much reduced cooperativity, suggesting a degree of structural disruption. These studies provide insight into the structural and sequential requirements for stator stalk function.
Molecular and Biochemical Parasitology | 2010
Huogen Xiao; Lee-Ann K. Briere; Stanley D. Dunn; Rickey Y. Yada
Histo-aspartic protease (HAP) from Plasmodium falciparum is an intriguing aspartic protease due to its unique structure. Our previous study reported the first recombinant expression of soluble HAP, in its truncated form (lys77p-Leu328) (p denotes prosegment), as a thioredoxin (Trx) fusion protein Trx-tHAP. The present study found that the recombinant Trx-tHAP fusion protein aggregated during purification which could be prevented through the addition of 0.2% CHAPS. Trx-tHAP fusion protein was processed into a mature form of tHAP (mtHAP) by both autoactivation, and activation with either enterokinase or plasmepsin II. Using gel filtration chromatography as well as sedimentation velocity and equilibrium ultracentrifugation, it was shown that the recombinant mtHAP exists in a dynamic monomer-dimer equilibrium with an increasing dissociation constant in the presence of CHAPS. Enzymatic activity data indicated that HAP was most active as a monomer. The dominant monomeric form showed a K(m) of 2.0 microM and a turnover number, k(cat), of 0.036s(-1) using the internally quenched fluorescent synthetic peptide substrate EDANS-CO-CH(2)-CH(2)-CO-Ala-Leu-Glu-Arg-Met-Phe-Leu-Ser-Phe-Pro-Dap-(DABCYL)-OH (2837b) at pH 5.2.
Biochemistry | 2014
John Cooper; Mélissa Hannauer; Cristina L. Marolda; Lee-Ann K. Briere; David E. Heinrichs
In response to iron starvation, Staphylococcus aureus secretes both staphyloferrin A and staphyloferrin B, which are high-affinity iron-chelating molecules. The structures of both HtsA and SirA, the ferric-staphyloferrin A [Fe(III)-SA] and ferric-staphyloferrin B [Fe(III)-SB] receptors, respectively, have recently been determined. The structure of HtsA identifies a novel form of ligand entrapment composed of many positively charged residues. Through ionic interactions, the binding pocket appears highly adapted for the binding of the highly anionic siderophore SA. However, biological validation of the importance of the nine SA-interacting residues (six arginines, one tyrosine, one histidine, and one lysine) has not been previously performed. Here, we mutated each of the Fe(III)-SA-interacting residues in HtsA and found that substitutions R104A, R126A, H209A, R306A, and R306K resulted in a reduction of binding affinity of HtsA for Fe(III)-SA. While mutation of almost all proposed ligand-interacting residues decreased the ability of S. aureus cells to transport (55)Fe(III)-SA, S. aureus expressing HtsA R104A, R126A, R306A, and R306K showed the greatest transport defects and were incapable of growth in iron-restricted growth media in a SA-dependent manner. These three residues cluster together and, relative to other residues in the binding pocket, move very little between the apo and closed holo structures. Their essentiality for receptor function, together with structural information, suggests that they form a positively charged platform that is required for initial contact with the terminal carboxyl groups of the two citrates in the Fe(III)-SA complex. This is a likely mechanism by which HtsA discerns iron-bound SA from iron-free SA.
Journal of Molecular Biology | 2008
Erik Kish-Trier; Lee-Ann K. Briere; Stanley D. Dunn; Stephan Wilkens
Journal of Thermal Analysis and Calorimetry | 2010
Lee-Ann K. Briere; Jan-M. Brandt; John B. Medley
Biochemistry | 2006
Lee-Ann K. Briere; Stanley D. Dunn
Orthopaedic Proceedings | 2011
Steven J. MacDonald; Jan-Mels Brandt; Kory D Charron; Lee-Ann K. Briere; Lin Zhao; John B. Medley