Lee Armus
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lee Armus.
Publications of the Astronomical Society of the Pacific | 2003
Robert C. Kennicutt; Lee Armus; G. J. Bendo; Daniela Calzetti; Daniel A. Dale; B. T. Draine; C. W. Engelbracht; Karl D. Gordon; Albert D. Grauer; George Helou; David J. Hollenbach; T. H. Jarrett; Lisa J. Kewley; Claus Leitherer; Aigen Li; Sangeeta Malhotra; Michael W. Regan; G. H. Rieke; Marcia J. Rieke; Helene Roussel; J.-D. T. Smith; Michele D. Thornley; Fabian Walter
The SIRTF Nearby Galaxy Survey is a comprehensive infrared imaging and spectroscopic survey of 75 nearby galaxies. Its primary goal is to characterize the infrared emission of galaxies and their principal infrared-emitting components, across a broad range of galaxy properties and star formation environments. SINGS will provide new insights into the physical processes connecting star formation to the interstellar medium properties of galaxies and provide a vital foundation for understanding infrared observations of the distant universe and ultraluminous and active galaxies. The galaxy sample and observing strategy have been designed to maximize the scientific and archival value of the data set for the SIRTF user community at large. The SIRTF images and spectra will be supplemented by a comprehensive multiwavelength library of ancillary and complementary observations, including radio continuum, H i, CO, submillimeter, BVRIJHK ,H a ,P aa, ultraviolet, and X-ray data. This paper describes the main astrophysical issues to be addressed by SINGS, the galaxy sample and the observing strategy, and the SIRTF and other ancillary data products.
Astrophysical Journal Supplement Series | 1990
Timothy M. Heckman; Lee Armus; George K. Miley
Optical spectroscopic data are presented on the ionized nebulae associated with 14 galaxies that are strong far-IR emitters. It is found that the data provide both qualitative and quantitative support for the superwind model in which the kinetic energy provided by SNe and winds from massive stars in a central starburst drives a large-scale outflow that can shock heat and accelerate ambient interstellar and circumgalactic gas. Clear kinematic signatures of an outflow along the galaxys minor axis are found for the three nearest far-IR galaxies (FIRGs). The FIRG nebulae are highly overpressured relative to the Galactic ISM, with the pressure dropping systematically with distance from the nucleus. Superwinds are energetically adequate to power both the observed optical and X-ray nebulae, and the relative emission-line intensities and their radial variations are consistent with ionization by wind-driven shocks, but not with photoionization by normal O stars or an AGN. The possible astrophysical implications of superwinds are discussed. 158 refs.
Astronomy and Astrophysics | 2011
D. Elbaz; M. Dickinson; H. S. Hwang; T. Díaz-Santos; G. Magdis; B. Magnelli; D. Le Borgne; F. Galliano; M. Pannella; P. Chanial; Lee Armus; V. Charmandaris; E. Daddi; H. Aussel; P. Popesso; J. Kartaltepe; B. Altieri; I. Valtchanov; D. Coia; H. Dannerbauer; K. Dasyra; R. Leiton; Joseph M. Mazzarella; D. M. Alexander; V. Buat; D. Burgarella; Ranga-Ram Chary; R. Gilli; R. J. Ivison; S. Juneau
We present the deepest 100 to 500 μm far-infrared observations obtained with the Herschel Space Observatory as part of the GOODS-Herschel key program, and examine the infrared (IR) 3–500 μm spectral energy distributions (SEDs) of galaxies at 0 < z < 2.5, supplemented by a local reference sample from IRAS, ISO, Spitzer, and AKARI data. We determine the projected star formation densities of local galaxies from their radio and mid-IR continuum sizes. We find that the ratio of total IR luminosity to rest-frame 8 μm luminosity, IR8 (≡ L_(IR)^(tot)/L_8), follows a Gaussian distribution centered on IR8 = 4 (σ = 1.6) and defines an IR main sequence for star-forming galaxies independent of redshift and luminosity. Outliers from this main sequence produce a tail skewed toward higher values of IR8. This minority population ( 3 × 10^(10) L_⊙ kpc^(-2)) and a high specific star formation rate (i.e., starbursts). The rest-frame, UV-2700 A size of these distant starbursts is typically half that of main sequence galaxies, supporting the correlation between star formation density and starburst activity that is measured for the local sample. Locally, luminous and ultraluminous IR galaxies, (U)LIRGs (L_(IR)^(tot)≥ 10^(11) L_☉), are systematically in the starburst mode, whereas most distant (U)LIRGs form stars in the “normal” main sequence mode. This confusion between two modes of star formation is the cause of the so-called “mid-IR excess” population of galaxies found at z > 1.5 by previous studies. Main sequence galaxies have strong polycyclic aromatic hydrocarbon (PAH) emission line features, a broad far-IR bump resulting from a combination of dust temperatures (T_(dust) ~ 15–50 K), and an effective T_(dust) ~ 31 K, as derived from the peak wavelength of their infrared SED. Galaxies in the starburst regime instead exhibit weak PAH equivalent widths and a sharper far-IR bump with an effective T_(dust)~ 40 K. Finally, we present evidence that the mid-to-far IR emission of X-ray active galactic nuclei (AGN) is predominantly produced by star formation and that candidate dusty AGNs with a power-law emission in the mid-IR systematically occur in compact, dusty starbursts. After correcting for the effect of starbursts on IR8, we identify new candidates for extremely obscured AGNs.
The Astrophysical Journal | 2007
D. Calzetti; Robert C. Kennicutt; C. W. Engelbracht; Claus Leitherer; B. T. Draine; Lisa J. Kewley; John Moustakas; Megan L. Sosey; Daniel A. Dale; Karl D. Gordon; G. Helou; David J. Hollenbach; Lee Armus; G. J. Bendo; Caroline Bot; Brent Alan Buckalew; T. H. Jarrett; Aigen Li; Martin Meyer; E. J. Murphy; Moire K. M. Prescott; Michael W. Regan; G. H. Rieke; Helene Roussel; Kartik Sheth; J. D. Smith; Michele D. Thornley; F. Walter
With the goal of investigating the degree to which the MIR emission traces the SFR, we analyze Spitzer 8 and 24 μm data of star-forming regions in a sample of 33 nearby galaxies with available HST NICMOS images in the Paα (1.8756 μm) emission line. The galaxies are drawn from the SINGS sample and cover a range of morphologies and a factor ~10 in oxygen abundance. Published data on local low-metallicity starburst galaxies and LIRGs are also included in the analysis. Both the stellar continuum-subtracted 8 μm emission and the 24 μm emission correlate with the extinction-corrected Paα line emission, although neither relationship is linear. Simple models of stellar populations and dust extinction and emission are able to reproduce the observed nonlinear trend of the 24 μm emission versus number of ionizing photons, including the modest deficiency of 24 μm emission in the low-metallicity regions, which results from a combination of decreasing dust opacity and dust temperature at low luminosities. Conversely, the trend of the 8 μm emission as a function of the number of ionizing photons is not well reproduced by the same models. The 8 μm emission is contributed, in larger measure than the 24 μm emission, by dust heated by nonionizing stellar populations, in addition to the ionizing ones, in agreement with previous findings. Two SFR calibrations, one using the 24 μm emission and the other using a combination of the 24 μm and Hα luminosities (Kennicutt and coworkers), are presented. No calibration is presented for the 8 μm emission because of its significant dependence on both metallicity and environment. The calibrations presented here should be directly applicable to systems dominated by ongoing star formation.
The Astrophysical Journal | 2007
J.-D. T. Smith; B. T. Draine; Daniel A. Dale; John Moustakas; Robert C. Kennicutt; G. Helou; Lee Armus; Helene Roussel; K. Sheth; G. J. Bendo; Brent Alan Buckalew; Daniela Calzetti; C. W. Engelbracht; Karl D. Gordon; David J. Hollenbach; Aigen Li; Sangeeta Malhotra; E. J. Murphy; F. Walter
We present a sample of low-resolution 5-38 μm Spitzer IRS spectra of the inner few square kiloparsecs of 59 nearby galaxies spanning a large range of star formation properties. A robust method for decomposing mid-infrared galaxy spectra is described and used to explore the behavior of PAH emission and the prevalence of silicate dust extinction. Evidence for silicate extinction is found in ~1/8 of the sample, at strengths that indicate that most normal galaxies undergo A_V ≲ 3 mag averaged over their centers. The contribution of PAH emission to the total infrared power is found to peak near 10% and extend up to ~20% and is suppressed at metallicities Z ≲ Z_☉/4, as well as in low-luminosity AGN environments. Strong interband PAH feature strength variations (2-5 times) are observed, with the presence of a weak AGN and, to a lesser degree, increasing metallicity shifting power to the longer wavelength bands. A peculiar PAH emission spectrum with markedly diminished 5-8 μm features arises among the sample solely in systems with relatively hard radiation fields harboring low-luminosity AGNs. The AGNs may modify the emitting grain distribution and provide the direct excitation source of the unusual PAH emission, which cautions against using absolute PAH strength to estimate star formation rates in systems harboring active nuclei. Alternatively, the low star formation intensity often associated with weak AGNs may affect the spectrum. The effect of variations in the mid-infrared spectrum on broadband infrared surveys is modeled and points to more than a factor of 2 uncertainty in results that assume a fixed PAH emission spectrum, for redshifts z = 0-2.5.
Astrophysical Journal Supplement Series | 2004
Mark Lacy; Lisa J. Storrie-Lombardi; Anna Sajina; P. N. Appleton; Lee Armus; S. C. Chapman; P. I. Choi; D. Fadda; F. Fang; D. T. Frayer; I. Heinrichsen; G. Helou; Myungshin Im; Francine Roxanne Marleau; Frank J. Masci; D. L. Shupe; B. T. Soifer; Jason A. Surace; Harry I. Teplitz; G. Wilson; Lin Yan
Selection of active galactic nuclei (AGNs) in the infrared facilitates the discovery of AGNs whose optical emission is extinguished by dust. In this paper, we use the Spitzer Space Telescope First Look Survey (FLS) to assess the fraction of AGNs with mid-infrared (MIR) luminosities that are comparable to quasars and that are missed in optical quasar surveys because of dust obscuration. We begin by using the Sloan Digital Sky Survey (SDSS) database to identify 54 quasars within the 4 deg^2 extragalactic FLS. These quasars occupy a distinct region in MIR color space by virtue of their strong, red continua. This has allowed us to define an MIR color criterion for selecting AGN candidates. About 2000 FLS objects have colors that are consistent with them being AGNs, but most are much fainter in the MIR than the SDSS quasars, which typically have 8 μm flux densities S_(8.0) ~ 1 mJy. We have investigated the properties of 43 objects with S_(8.0) ≥ 1 mJy that satisfy our AGN color selection. This sample should contain both unobscured quasars as well as AGNs that are absent from the SDSS survey because of extinction in the optical. After removing 16 known quasars, three probable normal quasars, and eight spurious or confused objects from the initial sample of 43, we are left with 16 objects that are likely to be obscured quasars or luminous Seyfert 2 galaxies. This suggests that the numbers of obscured and unobscured AGNs are similar in samples selected in the MIR at S_(8.0) ~ 1 mJy.
The Astrophysical Journal | 2007
Robert C. Kennicutt; Daniela Calzetti; Fabian Walter; George Helou; David J. Hollenbach; Lee Armus; G. J. Bendo; Daniel A. Dale; B. T. Draine; C. W. Engelbracht; Karl D. Gordon; Moire K. M. Prescott; Michael W. Regan; Michele D. Thornley; Caroline Bot; Elias Brinks; Erwin de Blok; Duilia Fernandes de Mello; Martin Meyer; John Moustakas; E. J. Murphy; Kartik Sheth; J. D. Smith
We have studied the relationship between the star formation rate (SFR), surface density, and gas surface density in the spiral galaxy M51a (NGC 5194), using multiwavelength data obtained as part of the Spitzer Infrared Nearby Galaxies Survey (SINGS). We introduce a new SFR index based on a linear combination of Hα emission-line and 24 μm continuum luminosities, which provides reliable extinction-corrected ionizing fluxes and SFR densities over a wide range of dust attenuations. The combination of these extinction-corrected SFR densities with aperture synthesis H I and CO maps has allowed us to probe the form of the spatially resolved star formation law on scales of 0.5-2 kpc. We find that the resolved SFR versus gas surface density relation is well represented by a Schmidt power law, which is similar in form and dispersion to the disk-averaged Schmidt law. We observe a comparably strong correlation of the SFR surface density with the molecular gas surface density, but no significant correlation with the surface density of atomic gas. The best-fitting slope of the Schmidt law varies from N = 1.37 to 1.56, with zero point and slope that change systematically with the spatial sampling scale. We tentatively attribute these variations to the effects of areal sampling and averaging of a nonlinear intrinsic star formation law. Our data can also be fitted by an alternative parameterization of the SFR surface density in terms of the ratio of gas surface density to local dynamical time, but with a considerable dispersion.
The Astrophysical Journal | 2005
Daniela Calzetti; Robert C. Kennicutt; Luciana Bianchi; David Allan Thilker; Daniel A. Dale; C. W. Engelbracht; Claus Leitherer; Martin Meyer; Megan L. Sosey; Maximilian J. Mutchler; Michael W. Regan; Michele D. Thornley; Lee Armus; G. J. Bendo; S. Boissier; A. Boselli; B. T. Draine; Karl D. Gordon; G. Helou; David J. Hollenbach; Lisa J. Kewley; Barry F. Madore; D. C. Martin; E. J. Murphy; G. H. Rieke; Marcia J. Rieke; H. Roussel; Kartik Sheth; J. D. Smith; Frederick M. Walter
(Abridged) Far ultraviolet to far infrared images of the nearby galaxy NGC5194, from Spitzer, GALEX, Hubble Space Telescope and ground--based data, are used to investigate local and global star formation, and the impact of dust extinction in HII-emitting knots. In the IR/UV-UV color plane, the NGC5194 HII knots show the same trend observed for normal star-forming galaxies, having a much larger dispersion than starburst galaxies. We identify the dispersion as due to the UV emission predominantly tracing the evolved, non-ionizing stellar population, up to ages 50-100 Myr. While in starbursts the UV light traces the current SFR, in NGC5194 it traces a combination of current and recent-past SFR. Unlike the UV emission, the monochromatic 24 micron luminosity is an accurate local SFR tracer for the HII knots in NGC5194; this suggests that the 24 micron emission carriers are mainly heated by the young, ionizing stars. However, preliminary results show that the ratio of the 24 micron emission to the SFR varies by a factor of a few from galaxy to galaxy. While also correlated with star formation, the 8 micron emission is not directly proportional to the number of ionizing photons. This confirms earlier suggestions that the carriers of the 8 micron emission are heated by more than one mechanism.
The Astrophysical Journal | 2007
Lee Armus; V. Charmandaris; J. Bernard-Salas; H. W. W. Spoon; J. A. Marshall; Sarah J. U. Higdon; Vandana Desai; Harry I. Teplitz; Lei Hao; D. Devost; Bernhard R. Brandl; Yanling Wu; G. C. Sloan; B. T. Soifer; J. R. Houck; Terry L. Herter
We present spectra taken with the Infrared Spectrograph on Spitzer covering the 5-38 μm region of the 10 ultraluminous infrared galaxies (ULIRGs) found in the IRAS Bright Galaxy Sample (BGS). There is a factor of 50 spread in the rest-frame 5.5-60 μm spectral slopes, and the 9.7 μm silicate optical depths range from at least τ_(9.7) ≤ 0.4 (A_V ~ 8) to τ_(9.7) ≥ 4.2 (A_V ≥ 78). There is evidence for water ice and hydrocarbon absorption and C_2H_2 and HCN absorption features in 4 and possibly 6 of the 10 BGS ULIRGs, indicating shielded molecular clouds and a warm, dense ISM. We have detected [Ne V] emission in 3 of the 10 BGS ULIRGs, at flux levels of 5-18 × 10^(-14) ergs cm^(-2) s^(-1) and [Ne V] 14.3/[Ne II] 12.8 line flux ratios of 0.12-0.85. The remaining BGS ULIRGs have limits on their [Ne V]/[Ne II]line flux ratios, which range from ≤0.15 to ≤0.01. Among the BGS ULIRGs, the AGN fractions implied by either the [Ne V]/[Ne II] or [O IV]/[Ne II] line flux ratios (or their upper limits) are significantly lower than implied by the MIR slope or strength of the 6.2 μm PAH EQW feature. There is evidence for hot (T > 300 K) dust in five of the BGS ULIRGs, with the fraction of hot dust to total dust luminosity ranging from ~1% to 23%, before correcting for extinction. When integrated over the IRAC-8, IRS blue peak-up, and MIPS-24 filter bandpasses, the IRS spectra imply very blue colors for some ULIRGs at z ~ 1.3. The large range in diagnostic parameters among the nearest ULIRGs suggests that matching survey results to a small number of templates may lead to biased results about the fraction of luminous dusty starbursts and AGNs at high z.
The Astrophysical Journal | 2007
Daniel A. Dale; A. Gil de Paz; Karl D. Gordon; H. M. Hanson; Lee Armus; G. J. Bendo; Luciana Bianchi; Miwa Block; S. Boissier; A. Boselli; Brent Alan Buckalew; V. Buat; D. Burgarella; Daniela Calzetti; John M. Cannon; C. W. Engelbracht; G. Helou; David J. Hollenbach; T. H. Jarrett; Robert C. Kennicutt; Claus Leitherer; Aigen Li; Barry F. Madore; D. C. Martin; Martin Meyer; E. J. Murphy; Michael W. Regan; Helene Roussel; J. D. Smith; Megan L. Sosey
The ultraviolet-to-radio continuum spectral energy distributions are presented for all 75 galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS). A principal component analysis of the sample shows that most of the samples spectral variations stem from two underlying components, one representative of a galaxy with a low infrared-to-ultraviolet ratio and one representative of a galaxy with a high infrared-to-ultraviolet ratio. The influence of several parameters on the infrared-to-ultraviolet ratio is studied (e.g., optical morphology, disk inclination, far-infrared color, ultraviolet spectral slope, and star formation history). Consistent with our understanding of normal star-forming galaxies, the SINGS sample of galaxies in comparison to more actively star-forming galaxies exhibits a larger dispersion in the infrared-to-ultraviolet versus ultraviolet spectral slope correlation. Early-type galaxies, exhibiting low star formation rates and high optical surface brightnesses, have the most discrepant infrared-to-ultraviolet correlation. These results suggest that the star formation history may be the dominant regulator of the broadband spectral variations between galaxies. Finally, a new discovery shows that the 24 μm morphology can be a useful tool for parameterizing the global dust temperature and ultraviolet extinction in nearby galaxies. The dust emission in dwarf/irregular galaxies is clumpy and warm accompanied by low ultraviolet extinction, while in spiral galaxies there is typically a much larger diffuse component of cooler dust and average ultraviolet extinction. For galaxies with nuclear 24 μm emission, the dust temperature and ultraviolet extinction are relatively high compared to disk galaxies.