Lee Baumgartner
Charles Sturt University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lee Baumgartner.
Marine and Freshwater Research | 2006
Lee Baumgartner; Nathan Reynoldson; Dean M. Gilligan
Determining factors responsible for increases in the mortality of freshwater fish larvae are important for the conservation of recruitment processes and for the long-term sustainability of freshwater fish populations. To assess the impact of one such process, Murray cod (Maccullochella peelii peelii Mitchell) and golden perch (Macquaria ambigua Richardson) larvae were arranged into treatment and control groups and passed through different configurations (overshot and undershot) of a low-level weir. Passage through an undershot weir resulted in the death of 95 ± 1% golden perch and 52 ± 13% Murray cod. By comparison, mortality was significantly lower in the overshot treatment and both controls. The relatively large number of undershot weirs within the known distribution of these species could impact upon recruitment over a large scale. It is therefore recommended that water management authorities consider the potential threats of operating undershot gated weirs on the survival of larval fish until further research determines appropriate mitigatory measures for these and other species.
Australian Journal of Zoology | 2010
Lee Baumgartner; Craig A. Boys; Ivor G. Stuart; Brenton P. Zampatti
To provide passage for migratory native fish, a series of 14 vertical-slot and lock fishways are being constructed on the Murray River in south-eastern Australia. Three of these vertical-slot fishways, at Locks 7, 9 and 10, have a conservative slope (1V : 32H) and are designed with internal hydraulics suitable for the passage of a broad size range of fish (30–1000 mm long). An assessment of these fishways was performed using a combined trapping survey and passive integrated transponder (PIT) approach to determine fishway effectiveness at passing an entire fish community. Fish were trapped within the three fishways between 2004 and 2006, where a total of 13 626 individuals comprising 13 species were collected from 48 sample days (24 h each). Trapping data revealed that the three fishways successfully passed fish within the target size range, though significantly greater numbers of individuals smaller (10–29 mm long) than the target size range could not ascend. PIT tagging revealed important information on fishway ascent times, descent times, seasonality and diel behaviour of medium and large fish. Although each method alone had advantages and disadvantages, the dual assessment approach was useful as it permitted an assessment of fishway success and also provided insights into migratory fish behaviour.
Conservation Physiology | 2013
Richard S. Brown; Katrina V. Cook; Brett D. Pflugrath; Latricia L. Rozeboom; Rachelle C. Johnson; Jason G. McLellan; Timothy J. Linley; Yong Gao; Lee Baumgartner; Frederick E. Dowell; Erin A. Miller; Timothy A. White
Techniques were developed to determine when fish are vulnerable to barotrauma when rapidly decompressed during hydroturbine passage. Sturgeons were decompressed in early life-stages and X-ray radiographs were taken to determine when gas was present in the swim bladder. Barotrauma was observed on day 9 and greater than 75 days after hatching.
PLOS ONE | 2013
Craig A. Boys; Wayne Robinson; Lee Baumgartner; Ben Rampano; Michael Lowry
Fish screens can help prevent the entrainment or injury of fish at irrigation diversions, but only when designed appropriately. Design criteria cannot simply be transferred between sites or pump systems and need to be developed using an evidence-based approach with the needs of local species in mind. Laboratory testing is typically used to quantify fish responses at intake screens, but often limits the number of species that can studied and creates artificial conditions not directly applicable to screens in the wild. In this study a field-based approach was used to assess the appropriateness of different screen design attributes for the protection of a lowland river fish assemblage at an experimental irrigation pump. Direct netting of entrained fish was used along with sonar technology to quantify the probability of screen contact for a Murray-Darling Basin (Australia) fish species. Two approach velocities (0.1 and 0.5 m.sec−1) and different sizes of woven mesh (5, 10 and 20 mm) were evaluated. Smaller fish (<150 mm) in the assemblage were significantly more susceptible to entrainment and screen contact, especially at higher approach velocities. Mesh size appeared to have little impact on screen contact and entrainment, suggesting that approach velocity rather than mesh size is likely to be the primary consideration when developing screens. Until the effects of screen contacts on injury and survival of these species are better understood, it is recommended that approach velocities not exceed 0.1 m.sec−1 when the desire is to protect the largest range of species and size classes for lowland river fish assemblages in the Murray-Darling Basin. The field method tested proved to be a useful approach that could compliment laboratory studies to refine fish screen design and facilitate field validation.
Nature Ecology and Evolution | 2017
R. Keller Kopf; Dale G. Nimmo; Paul Humphries; Lee Baumgartner; Michael Bode; Nick R. Bond; Andrea E. Byrom; Julien Cucherousset; Reuben P. Keller; Alison J. King; Heather M. McGinness; Peter B. Moyle; Julian D. Olden
Large-scale invasive species control initiatives are motivated by laudable desires for native species recovery and economic benefits, but they are not without risk. Management interventions and policies should include evidence-based risk-benefit assessment and mitigation planning.
Marine and Freshwater Research | 2017
John H. Harris; Richard T. Kingsford; William L. Peirson; Lee Baumgartner
Declining fish communities characterise global freshwater environments, including those in Australia. Lost river connectivity through water resource development is a key cause of decline, disrupting fish migrations and threatening species productivity, viability and fisheries. Millions of dams, weirs and lesser barriers arising from water resources projects, road and rail transport and hydro-electricity schemes obstruct fish passage in rivers worldwide. Fishways are in place at few sites in Australia and globally relative to the numbers of barriers, and few mitigate the effects of barriers adequately. Most constrain the passage of fish communities and few have performed effectively when assessed against appropriate biological standards. Herein we focus on Australian experience within the global context of obstructed fish migrations, declining fish biodiversity and inadequate fishway performance. We review the migratory characteristics of Australian freshwater fish, identify the effects of different in-stream barriers and other habitat changes on the four classes of migratory behaviour and note how Australia’s highly variable hydrology presents particular challenges in mitigating fish passage barriers. Mitigation options include: basin-scale approaches; improved management of barriers, environmental flows and water quality; barrier removal; and development of improved fishway designs. Mitigation of fish-passage problems can aid in adapting to climate change effects, reversing fisheries declines and rehabilitating fish communities.
Marine and Freshwater Research | 2016
Jamin Forbes; Robyn Watts; Wayne Robinson; Lee Baumgartner; Prue McGuffie; Leo M. Cameron; David A. Crook
Stock enhancement is a management tool used for fishery recovery worldwide, yet the success of many stocking programs remains unquantified. Murray cod (Maccullochella peelii) and golden perch (Macquaria ambigua) are important Australian recreational target species that have experienced widespread decline. Stocking of these species has been undertaken for decades, with limited assessment of effectiveness. A batch marking and recapture approach was applied to assess stocked Murray cod and golden perch survival, contributions to wild fisheries, and condition in rivers and impoundments. Stocked fish were marked with calcein. Marked fish were detected during surveys undertaken 3 years and 10 months from initial marking, and it is probable that marks will persist beyond this time. The proportion of calcein marked fish in the population sub-sample whose age was equal to, or less than, the number of years since release, varied by 7–94% for Murray cod, and 9–98% for golden perch. Higher proportions of marked fish were found in impoundments than rivers. Marked Murray cod had significantly steeper length–weight relationships (i.e. higher weight at a given length) to unmarked fish. Our results show that application of methods for discriminating stocked and wild fish provides critical information for the development of adaptive, location-specific stocking strategies.
Marine and Freshwater Research | 2011
James A. Smith; Lee Baumgartner; Iain M. Suthers; Matthew D. Taylor
Fish are commonly stocked into impoundments globally, yet their patterns of habitat use in this variable environment are rarely incorporated into the management of stocking density. The movement and distribution of Australian bass Macquaria novemaculata (Perchichthyidae) were monitored in two impoundments to assess whether: (1) impoundment populations exhibit behaviour typical of wild or riverine percichthyids; (2) changing gradients of temperature and dissolved oxygen influenced distribution; and (3) the volume of available habitat should be incorporated into the management of these fisheries. Habitat use was determined with a combination of gill netting and ultrasonic telemetry using depth-coded tags. Tagged fish displayed both crepuscular and migratory behaviour typical of the Percichthyidae, but also showed a previously unobserved division between littoral and pelagic foraging strategies. Australian bass showed no obvious thermal preferences, but avoided areas with dissolved oxygen <4 mg L–1. In one impoundment, a combination of hypoxia and water extraction reduced the volume of available habitat to 15% of maximum in March 2009, which coincided with increased catch per unit effort (CPUE) and decreased fish condition. The adaptive behaviour of Australian bass makes them well suited to the variability of impoundments, but annual and stochastic events of habitat reduction should be considered when planning stocking regimes for these fisheries.
Marine and Freshwater Research | 2016
David A. Crook; Damien J. O'Mahony; Bronwyn M. Gillanders; Andrew R. Munro; Andrew C. Sanger; Stephen Thurstan; Lee Baumgartner
Stocking of native fishes is conducted to augment riverine fisheries in many parts of the world, yet most stocking activities are conducted without empirical information on their effectiveness or impacts. In the Murray–Darling Basin (MDB), Australia, stocking has been underway for several decades to maintain recreational fisheries. We stocked chemically tagged golden perch (Macquaria ambigua) fingerlings in three rivers to determine the proportions of stocked fish within populations of the species. Stocked sites were monitored for up to 5 years in the Murrumbidgee River, Edward River and Billabong Creek and non-stocked sites were monitored in the Murray River. Catch per unit effort of stocked year classes increased substantially in Billabong Creek, with stocked fish contributing 100 (2005), 79 (2006) and 92% (2007). Chemically tagged fish comprised 18–38% of the respective age classes in the Murrumbidgee and Edward rivers and there was little evidence of natural recruitment in the non-stocked Murray River. Tagged fish generally attained the legal minimum size within 4 years and had dispersed up to 60km from the original release location. Our results demonstrate that artificial stocking has the potential to strongly influence the abundance and population structure of golden perch in rivers of the MDB.
Journal of Renewable and Sustainable Energy | 2014
Lee Baumgartner; Z. Daniel Deng; Garry Thorncraft; Craig A. Boys; Richard S. Brown; Douangkham Singhanouvong; Oudom Phonekhampeng
Tropical rivers have high annual discharges optimal for hydropower and irrigation development. The Mekong River is one of the largest tropical river systems, supporting a unique mega-diverse fish community. Fish are an important commodity in the Mekong, contributing a large proportion of calcium, protein, and essential nutrients to the diet of the local people and providing a critical source of income for rural households. Many of these fish migrate not only upstream and downstream within main-channel habitats but also laterally into highly productive floodplain habitat to both feed and spawn. Most work to date has focused on providing for upstream fish passage, but downstream movement is an equally important process to protect. Expansion of hydropower and irrigation weirs can disrupt downstream migrations and it is important to ensure that passage through regulators or mini hydro systems is not harmful or fatal. Many new infrastructure projects (<6 m head) are proposed for the thousands of tributary stre...