Lee G. Klinkenberg
Johns Hopkins University School of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lee G. Klinkenberg.
Infection and Immunity | 2009
Paul J. Converse; Petros C. Karakousis; Lee G. Klinkenberg; Anup K. Kesavan; Lan H. Ly; Shannon Sedberry Allen; Jacques Grosset; Sanjay K. Jain; Gyanu Lamichhane; Yukari C. Manabe; David N. McMurray; Eric L. Nuermberger; William R. Bishai
ABSTRACT The Mycobacterium tuberculosis dosR gene (Rv3133c) is part of an operon, Rv3134c-Rv3132c, and encodes a response regulator that has been shown to be upregulated by hypoxia and other in vitro stress conditions and may be important for bacterial survival within granulomatous lesions found in tuberculosis. DosR is activated in response to hypoxia and nitric oxide by DosS (Rv3132c) or DosT (Rv2027c). We compared the virulence levels of an M. tuberculosis dosR-dosS deletion mutant (ΔdosR-dosS [ΔdosR-S]), a dosR-complemented strain, and wild-type H37Rv in rabbits, guinea pigs, and mice infected by the aerosol route and in a mouse hollow-fiber model that may mimic in vivo granulomatous conditions. In the mouse and the guinea pig models, the ΔdosR-S mutant exhibited a growth defect. In the rabbit, the ΔdosR-S mutant did not replicate more than the wild type. In the hollow-fiber model, the mutant phenotype was not different from that of the wild-type strain. Our analyses reveal that the dosR and dosS genes are required for full virulence and that there may be differences in the patterns of attenuation of this mutant between the animal models studied.
The Journal of Infectious Diseases | 2008
Lee G. Klinkenberg; Lesley A. Sutherland; William R. Bishai; Petros C. Karakousis
During human latent tuberculosis (TB) infection, dormant bacilli putatively reside within the hypoxic environment of caseating lung granulomas. The anaerobic drug metronidazole has antituberculous activity under hypoxic conditions in vitro but lacks activity against murine TB. In the present study, we used the hypoxia marker pimonidazole to demonstrate the presence of hypoxia in a novel in vivo granuloma model of Mycobacterium tuberculosis latency. We also used a high-throughput, microarray-based technique to identify mycobacterial genes essential to hypoxia and showed that this in vivo model correctly identified 51% of hypoxia-attenuated mutants, a significantly larger percentage than that identified by the mouse (29%) and guinea pig (29%) aerosol models of TB. Although isoniazid showed activity during the first 28 days of therapy and rifampin was active against dormant bacilli after the establishment of hypoxia, metronidazole showed no antituberculous activity in this in vivo hypoxic granuloma model of M. tuberculosis dormancy.
The Journal of Infectious Diseases | 2010
Lee G. Klinkenberg; Jong Hee Lee; William R. Bishai; Petros C. Karakousis
During human latent tuberculosis infection, Mycobacterium tuberculosis likely resides within the nutrient‐starved environment of caseous lung granulomas. The stringent response alarmone (p)ppGpp is synthesized by Rel in response to nutrient starvation, thus enabling tubercle bacilli to restrict growth and shut down metabolism in a coordinated fashion. In this study, we investigated the virulence of a rel‐deficient M. tuberculosis mutant in the guinea pig model. Quantitative reverse‐transcription polymerase chain reaction was used to study the effect of (p)ppGpp deficiency on expression of key cytokine and chemokine genes in guinea pig lungs. The rel‐deficient mutant showed impaired initial growth and survival relative to the wild‐type strain. Loss of Rel was associated with the striking absence of tubercle lesions grossly and of caseous granulomas histologically. The attenuated phenotype of the rel‐deficient mutant was not associated with increased expression of genes encoding the proinflammatory cytokines interferon‐γ and tumor necrosis factor α in the lungs 28 days after infection.
The Journal of Infectious Diseases | 2007
S. Moises Hernandez-Abanto; Qi-Jian Cheng; Prabhpreet Singh; Lan H. Ly; Lee G. Klinkenberg; Norman E. Morrison; Paul J. Converse; Eric L. Nuermberger; Jacques Grosset; David N. McMurray; Petros C. Karakousis; Gyanu Lamichhane; William R. Bishai; Sanjay K. Jain
BACKGROUND Mouse and guinea pig models have been used to identify Mycobacterium tuberculosis mutants attenuated for survival. However, unlike mice, M. tuberculosis-infected guinea pigs form caseating granulomas, which may simulate human disease more closely. METHODS We used designer arrays for defined mutant analysis, a high-throughput subtractive competition assay, for genotypically defined M. tuberculosis mutants and compared the survival of the same mutant pools in guinea pig and mouse aerosol models. Selected mutants found to be attenuated in either aerosol model were also analyzed in the mouse hollow-fiber model. RESULTS M. tuberculosis mutants representing 74 genes were tested. Eighteen M. tuberculosis mutants were attenuated for survival in either aerosol model, with 70% of selected mutants also attenuated in the mouse hollow-fiber model. The majority of attenuated mutants in the mouse aerosol model were detected only after 90 days of infection. There was a high degree of concordance between the genes identified by the 2 aerosol models, with detection being significantly earlier in the guinea pig (P<.0003). CONCLUSIONS We identified M. tuberculosis genes required for survival in mammalian lungs. The majority of mouse late-stage survival mutants were detected significantly earlier in the guinea pig, which suggests that differences in tuberculosis-induced lung pathologic changes may account for this accelerated detection.
PLOS ONE | 2010
Paul J. Converse; Kathleen D. Eisenach; Sue A. Theus; Eric L. Nuermberger; Sandeep Tyagi; Lan H. Ly; Deborah E. Geiman; Haidan Guo; Scott T. Nolan; Nicole C. Akar; Lee G. Klinkenberg; Radhika Gupta; Shichun Lun; Petros C. Karakousis; Gyanu Lamichhane; David N. McMurray; Jacques Grosset; William R. Bishai
Background It has been hypothesized that the virulence of lab-passaged Mycobacterium tuberculosis and recombinant M. tuberculosis mutants might be reduced due to multiple in vitro passages, and that virulence might be augmented by passage of these strains through mice before quantitative virulence testing in the mouse or guinea pig aerosol models. Methodology/Principal Findings By testing three M. tuberculosis H37Rv samples, one deletion mutant, and one recent clinical isolate for survival by the quantitative organ CFU counting method in mouse or guinea pig aerosol or intravenous infection models, we could discern no increase in bacterial fitness as a result of passaging of M. tuberculosis strains in mice prior to quantitative virulence testing in two animal models. Surface lipid expression as assessed by neutral red staining and thin-layer chromatography for PDIM analysis also failed to identify virulence correlates. Conclusions/Significance These results indicate that animal passaging of M. tuberculosis strains prior to quantitative virulence testing in mouse or guinea pig models does not enhance or restore potency to strains that may have lost virulence due to in vitro passaging. It is critical to verify virulence of parental strains before genetic manipulations are undertaken and comparisons are made.
Tuberculosis | 2011
Nicholas A. Be; Lee G. Klinkenberg; William R. Bishai; Petros C. Karakousis; Sanjay K. Jain
Clinical reports suggest an association of distinct Mycobacterium tuberculosis strains with CNS disease. We therefore examined CNS dissemination by different laboratory strains (two M. tuberculosis H37Rv, one CDC1551) in a guinea pig aerosol infection model. Although all strains grew exponentially in lungs, with similar bacterial burdens at the time of extrapulmonary dissemination, M. tuberculosis CDC1551 disseminated to the CNS significantly more than the H37Rv strains. No CNS lesions were observed throughout the study, with only a modest cytokine response. These data suggest that M. tuberculosis may have virulence factors that promote CNS dissemination, distinct from those required for pulmonary TB.
The Journal of Infectious Diseases | 2013
Lee G. Klinkenberg; Petros C. Karakousis
Tuberculosis is difficult to cure, requiring a minimum of 6 months of treatment with multiple antibiotics. Small numbers of organisms are able to tolerate the antibiotics and persist in the lungs of infected humans, but they still require some metabolic activity to survive. We studied the role of the hypoxia-induced Rv1894c gene in Mycobacterium tuberculosis virulence in guinea pigs, which develop hypoxic, necrotic granulomas histologically resembling those in humans and found this gene to be necessary for full bacillary growth and survival. We characterized the function of the encoded enzyme as a nitronate monooxygenase, which is needed to prevent the buildup of toxic products during hypoxic metabolism and is negatively regulated by the transcriptional repressor KstR. Future studies will focus on developing small-molecule inhibitors that target Rv1894c and its homologs, with the goal of killing persistent bacteria, thereby shortening the time needed to treat tuberculosis.
PLOS ONE | 2016
Ciaran Skerry; Lee G. Klinkenberg; Kathleen R. Page; Petros C. Karakousis
Co-infection with Mycobacterium tuberculosis accelerates progression from HIV to AIDS. Our previous studies showed that M. tuberculosis complex, unlike M. smegmatis, enhances TLR2-dependent susceptibility of CD4+ T cells to HIV. The M. tuberculosis complex produces multiple TLR2-stimulating lipoproteins, which are absent in M. smegmatis. M. tuberculosis production of mature lipoproteins and TLR2 stimulation is dependent on cleavage by lipoprotein signal peptidase A (LspA). In order to determine the role of potential TLR2-stimulating lipoproteins on mycobacterial-mediated HIV infectivity of CD4+ T cells, we generated M. smegmatis recombinant strains overexpressing genes encoding various M. bovis BCG lipoproteins, as well as a Mycobacterium bovis BCG strain deficient in LspA (ΔlspA). Exposure of human peripheral blood mononuclear cells (PBMC) to M. smegmatis strains overexpressing the BCG lipoproteins, LprF (p<0.01), LprH (p<0.05), LprI (p<0.05), LprP (p<0.001), LprQ (p<0.005), MPT83 (p<0.005), or PhoS1 (p<0.05), resulted in increased HIV infectivity of CD4+ T cells isolated from these PBMC. Conversely, infection of PBMC with ΔlspA reduced HIV infectivity of CD4+ T cells by 40% relative to BCG-infected cells (p<0.05). These results may have important implications for TB vaccination programs in areas with high mother-to-child HIV transmission.
The Journal of Infectious Diseases | 2009
Zahoor Ahmad; Lee G. Klinkenberg; Michael L. Pinn; Mostafa M. Fraig; Charles A. Peloquin; William R. Bishai; Eric L. Nuermberger; Jacques Grosset; Petros C. Karakousis
Archive | 2013
Petros C. Karakousis; Lee G. Klinkenberg; Edith Torries-Chavolla