Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lee J. Sweetlove is active.

Publication


Featured researches published by Lee J. Sweetlove.


Plant Physiology | 2006

Integrated Analysis of Metabolite and Transcript Levels Reveals the Metabolic Shifts That Underlie Tomato Fruit Development and Highlight Regulatory Aspects of Metabolic Network Behavior

Fernando Carrari; Charles Baxter; Ewa Urbanczyk-Wochniak; María-Inés Zanor; Adriano Nunes-Nesi; Victoria J. Nikiforova; Danilo Centero; Antje Ratzka; Markus Pauly; Lee J. Sweetlove; Alisdair R. Fernie

Tomato (Solanum lycopersicum) is a well-studied model of fleshy fruit development and ripening. Tomato fruit development is well understood from a hormonal-regulatory perspective, and developmental changes in pigment and cell wall metabolism are also well characterized. However, more general aspects of metabolic change during fruit development have not been studied despite the importance of metabolism in the context of final composition of the ripe fruit. In this study, we quantified the abundance of a broad range of metabolites by gas chromatography-mass spectrometry, analyzed a number of the principal metabolic fluxes, and in parallel analyzed transcriptomic changes during tomato fruit development. Metabolic profiling revealed pronounced shifts in the abundance of metabolites of both primary and secondary metabolism during development. The metabolite changes were reflected in the flux analysis that revealed a general decrease in metabolic activity during ripening. However, there were several distinct patterns of metabolite profile, and statistical analysis demonstrated that metabolites in the same (or closely related) pathways changed in abundance in a coordinated manner, indicating a tight regulation of metabolic activity. The metabolite data alone allowed investigations of likely routes through the metabolic network, and, as an example, we analyze the operational feasibility of different pathways of ascorbate synthesis. When combined with the transcriptomic data, several aspects of the regulation of metabolism during fruit ripening were revealed. First, it was apparent that transcript abundance was less strictly coordinated by functional group than metabolite abundance, suggesting that posttranslational mechanisms dominate metabolic regulation. Nevertheless, there were some correlations between specific transcripts and metabolites, and several novel associations were identified that could provide potential targets for manipulation of fruit compositional traits. Finally, there was a strong relationship between ripening-associated transcripts and specific metabolite groups, such as TCA-cycle organic acids and sugar phosphates, underlining the importance of the respective metabolic pathways during fruit development.


Trends in Plant Science | 2010

Not just a circle: flux modes in the plant TCA cycle

Lee J. Sweetlove; Katherine F. M. Beard; Adriano Nunes-Nesi; Alisdair R. Fernie; R. George Ratcliffe

The tricarboxylic acid (TCA) cycle is one of the iconic pathways in metabolism. The cycle is commonly thought of in terms of energy metabolism, being responsible for the oxidation of respiratory substrates to drive ATP synthesis. However, the reactions of carboxylic acid metabolism are embedded in a larger metabolic network and the conventional TCA cycle is only one way in which the component reactions can be organised. Recent evidence from labelling studies and metabolic network models suggest that the organisation of carboxylic acid metabolism in plants is highly dependent on the metabolic and physiological demands of the cell. Thus, alternative, non-cyclic flux modes occur in leaves in the light, in some developing oilseeds, and under specific physiological circumstances such as anoxia.


The Plant Cell | 2003

Enzymes of Glycolysis Are Functionally Associated with the Mitochondrion in Arabidopsis Cells

Philippe Giegé; Joshua L. Heazlewood; Ute Roessner-Tunali; A.H. Millar; Alisdair R. Fernie; Christopher J. Leaver; Lee J. Sweetlove

Mitochondria fulfill a wide range of metabolic functions in addition to the synthesis of ATP and contain a diverse array of proteins to perform these functions. Here, we present the unexpected discovery of the presence of the enzymes of glycolysis in a mitochondrial fraction of Arabidopsis cells. Proteomic analyses of this mitochondrial fraction revealed the presence of 7 of the 10 enzymes that constitute the glycolytic pathway. Four of these enzymes (glyceraldehyde-3-P dehydrogenase, aldolase, phosphoglycerate mutase, and enolase) were also identified in an intermembrane space/outer mitochondrial membrane fraction. Enzyme activity assays confirmed that the entire glycolytic pathway was present in preparations of isolated Arabidopsis mitochondria, and the sensitivity of these activities to protease treatments indicated that the glycolytic enzymes are present on the outside of the mitochondrion. The association of glycolytic enzymes with mitochondria was confirmed in vivo by the expression of enolase– and aldolase–yellow fluorescent protein fusions in Arabidopsis protoplasts. The yellow fluorescent protein fluorescence signal showed that these two fusion proteins are present throughout the cytosol but are also concentrated in punctate regions that colocalized with the mitochondrion-specific probe Mitotracker Red. Furthermore, when supplied with appropriate cofactors, isolated, intact mitochondria were capable of the metabolism of 13C-glucose to 13C-labeled intermediates of the trichloroacetic acid cycle, suggesting that the complete glycolytic sequence is present and active in this subcellular fraction. On the basis of these data, we propose that the entire glycolytic pathway is associated with plant mitochondria by attachment to the cytosolic face of the outer mitochondrial membrane and that this microcompartmentation of glycolysis allows pyruvate to be provided directly to the mitochondrion, where it is used as a respiratory substrate.


Plant Physiology | 2005

Enhanced Photosynthetic Performance and Growth as a Consequence of Decreasing Mitochondrial Malate Dehydrogenase Activity in Transgenic Tomato Plants

Adriano Nunes-Nesi; Fernando Carrari; Anna Lytovchenko; Anna Smith; Marcelo Ehlers Loureiro; R. George Ratcliffe; Lee J. Sweetlove; Alisdair R. Fernie

Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the mitochondrial malate dehydrogenase gene in the antisense orientation and exhibiting reduced activity of this isoform of malate dehydrogenase show enhanced photosynthetic activity and aerial growth under atmospheric conditions (360 ppm CO2). In comparison to wild-type plants, carbon dioxide assimilation rates and total plant dry matter were up to 11% and 19% enhanced in the transgenics, when assessed on a whole-plant basis. Accumulation of carbohydrates and redox-related compounds such as ascorbate was also markedly elevated in the transgenics. Also increased in the transgenic plants was the capacity to use l-galactono-lactone, the terminal precursor of ascorbate biosynthesis, as a respiratory substrate. Experiments in which ascorbate was fed to isolated leaf discs also resulted in increased rates of photosynthesis providing strong indication for an ascorbate-mediated link between the energy-generating processes of respiration and photosynthesis. This report thus shows that the repression of this mitochondrially localized enzyme improves both carbon assimilation and aerial growth in a crop species.


Trends in Plant Science | 2010

ROS signalling – specificity is required

Ian M. Møller; Lee J. Sweetlove

Reactive oxygen species (ROS) production increases in plants under stress. ROS can damage cellular components, but they can also act in signal transduction to help the cell counteract the oxidative damage in the stressed compartment. H(2)O(2) might induce a general stress response, but it does not have the required specificity to selectively regulate nuclear genes required for dealing with localized stress, e.g. in chloroplasts or mitochondria. Here we argue that peptides deriving from proteolytic breakdown of oxidatively damaged proteins have the requisite specificity to act as secondary ROS messengers and regulate source-specific genes and in this way contribute to retrograde ROS signalling during oxidative stress. Likewise, unmodified peptides deriving from the breakdown of redundant proteins could help coordinate organellar and nuclear gene expression.


Plant Physiology | 2006

The Metabolic Response of Heterotrophic Arabidopsis Cells to Oxidative Stress

Charles Baxter; Henning Redestig; Nicolas Schauer; Dirk Repsilber; Kiran Raosaheb Patil; Jens Nielsen; Joachim Selbig; Junli Liu; Alisdair R. Fernie; Lee J. Sweetlove

To cope with oxidative stress, the metabolic network of plant cells must be reconfigured either to bypass damaged enzymes or to support adaptive responses. To characterize the dynamics of metabolic change during oxidative stress, heterotrophic Arabidopsis (Arabidopsis thaliana) cells were treated with menadione and changes in metabolite abundance and 13C-labeling kinetics were quantified in a time series of samples taken over a 6 h period. Oxidative stress had a profound effect on the central metabolic pathways with extensive metabolic inhibition radiating from the tricarboxylic acid cycle and including large sectors of amino acid metabolism. Sequential accumulation of metabolites in specific pathways indicated a subsequent backing up of glycolysis and a diversion of carbon into the oxidative pentose phosphate pathway. Microarray analysis revealed a coordinated transcriptomic response that represents an emergency coping strategy allowing the cell to survive the metabolic hiatus. Rather than attempt to replace inhibited enzymes, transcripts encoding these enzymes are in fact down-regulated while an antioxidant defense response is mounted. In addition, a major switch from anabolic to catabolic metabolism is signaled. Metabolism is also reconfigured to bypass damaged steps (e.g. induction of an external NADH dehydrogenase of the mitochondrial respiratory chain). The overall metabolic response of Arabidopsis cells to oxidative stress is remarkably similar to the superoxide and hydrogen peroxide stimulons of bacteria and yeast (Saccharomyces cerevisiae), suggesting that the stress regulatory and signaling pathways of plants and microbes may share common elements.


Plant Physiology | 2009

A Genome-Scale Metabolic Model of Arabidopsis and Some of Its Properties

Mark G. Poolman; Laurent Miguet; Lee J. Sweetlove; David A. Fell

We describe the construction and analysis of a genome-scale metabolic model of Arabidopsis (Arabidopsis thaliana) primarily derived from the annotations in the Aracyc database. We used techniques based on linear programming to demonstrate the following: (1) that the model is capable of producing biomass components (amino acids, nucleotides, lipid, starch, and cellulose) in the proportions observed experimentally in a heterotrophic suspension culture; (2) that approximately only 15% of the available reactions are needed for this purpose and that the size of this network is comparable to estimates of minimal network size for other organisms; (3) that reactions may be grouped according to the changes in flux resulting from a hypothetical stimulus (in this case demand for ATP) and that this allows the identification of potential metabolic modules; and (4) that total ATP demand for growth and maintenance can be inferred and that this is consistent with previous estimates in prokaryotes and yeast.


The Plant Cell | 2007

Glycolytic Enzymes Associate Dynamically with Mitochondria in Response to Respiratory Demand and Support Substrate Channeling

J. W.A. Graham; Thomas C.R. Williams; Megan Morgan; Alisdair R. Fernie; R. G. Ratcliffe; Lee J. Sweetlove

In Arabidopsis thaliana, enzymes of glycolysis are present on the surface of mitochondria and free in the cytosol. The functional significance of this dual localization has now been established by demonstrating that the extent of mitochondrial association is dependent on respiration rate in both Arabidopsis cells and potato (Solanum tuberosum) tubers. Thus, inhibition of respiration with KCN led to a proportional decrease in the degree of association, whereas stimulation of respiration by uncoupling, tissue ageing, or overexpression of invertase led to increased mitochondrial association. In all treatments, the total activity of the glycolytic enzymes in the cell was unaltered, indicating that the existing pools of each enzyme repartitioned between the cytosol and the mitochondria. Isotope dilution experiments on isolated mitochondria, using 13C nuclear magnetic resonance spectroscopy to monitor the impact of unlabeled glycolytic intermediates on the production of downstream intermediates derived from 13C-labeled precursors, provided direct evidence for the occurrence of variable levels of substrate channeling. Pull-down experiments suggest that interaction with the outer mitochondrial membrane protein, VDAC, anchors glycolytic enzymes to the mitochondrial surface. It appears that glycolytic enzymes associate dynamically with mitochondria to support respiration and that substrate channeling restricts the use of intermediates by competing metabolic pathways.


Journal of Biological Chemistry | 2005

The Mitochondrial Type II Peroxiredoxin F Is Essential for Redox Homeostasis and Root Growth of Arabidopsis thaliana under Stress

Iris Finkemeier; Megan Goodman; Petra Lamkemeyer; Andrea Kandlbinder; Lee J. Sweetlove; Karl-Josef Dietz

Peroxiredoxins (Prx) have recently moved into the focus of plant and animal research in the context of development, adaptation, and disease, as they function both in antioxidant defense by reducing a broad range of toxic peroxides and in redox signaling relating to the adjustment of cell redox and antioxidant metabolism. At-PrxII F is one of six type II Prx identified in the genome of Arabidopsis thaliana and the only Prx that is targeted to the plant mitochondrion. Therefore, it might be assumed to have functions similar to the human 2-Cys Prx (PRDX3) and type II Prx (PRDX5) and yeast 1-Cys Prx that likewise have mitochondrial localizations. This paper presents a characterization of PrxII F at the level of subcellular distribution, activity, and reductive regeneration by mitochondrial thioredoxin and glutaredoxin. By employing tDNA insertion mutants of A. thaliana lacking expression of AtprxII F (KO-AtPrxII F), it is shown that under optimal environmental conditions the absence of PrxII F is almost fully compensated for, possibly by increases in activity of mitochondrial ascorbate peroxidase and glutathione-dependent peroxidase. However, a stronger inhibition of root growth in KO-AtPrxII F seedlings as compared with wild type is observed under stress conditions induced by CdCl2 as well as after administration of salicylhydroxamic acid, an inhibitor of cyanide-insensitive respiration. Simultaneously, major changes in the abundance of both nuclear and mitochondria-encoded transcripts were observed. These results assign a principal role to PrxII F in antioxidant defense and possibly redox signaling in plants cells.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Mitochondrial uncoupling protein is required for efficient photosynthesis

Lee J. Sweetlove; Anna Lytovchenko; Megan Morgan; Adriano Nunes-Nesi; Nicolas L. Taylor; Charles Baxter; Ira Eickmeier; Alisdair R. Fernie

Uncoupling proteins (UCPs) occur in the inner mitochondrial membrane and dissipate the proton gradient across this membrane that is normally used for ATP synthesis. Although the catalytic function and regulation of plant UCPs have been described, the physiological purpose of UCP in plants has not been established. Here, biochemical and physiological analyses of an insertional knockout of one of the Arabidopsis UCP genes (AtUCP1) are presented that resolve this issue. Absence of UCP1 results in localized oxidative stress but does not impair the ability of the plant to withstand a wide range of abiotic stresses. However, absence of UCP1 results in a photosynthetic phenotype. Specifically there is a restriction in photorespiration with a decrease in the rate of oxidation of photorespiratory glycine in the mitochondrion. This change leads to an associated reduced photosynthetic carbon assimilation rate. Collectively, these results suggest that the main physiological role of UCP1 in Arabidopsis leaves is related to maintaining the redox poise of the mitochondrial electron transport chain to facilitate photosynthetic metabolism.

Collaboration


Dive into the Lee J. Sweetlove's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adriano Nunes-Nesi

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark G. Poolman

Oxford Brookes University

View shared research outputs
Researchain Logo
Decentralizing Knowledge