Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lee Jia is active.

Publication


Featured researches published by Lee Jia.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis

Xing-Jie Liang; Huan Meng; Yingze Wang; Haiyong He; Jie Meng; Juan Lu; Paul C. Wang; Yuliang Zhao; Xueyun Gao; Baoyun Sun; Chunying Chen; Genmei Xing; Ding-Wu Shen; Michael M. Gottesman; Yan Wu; Jun Jie Yin; Lee Jia

Cisplatin is a chemotherapeutic drug commonly used in clinics. However, acquired resistance confines its application in chemotherapeutics. To overcome the acquired resistance to cisplatin, it is reasoned, based on our previous findings of mediation of cellular responses by [Gd@C82(OH)22]n nanoparticles, that [Gd@C82(OH)22]n may reverse tumor resistance to cisplatin by reactivating the impaired endocytosis of cisplatin-resistant human prostate cancer (CP-r) cells. Here we report that exposure of the CP-r PC-3-luc cells to cisplatin in the presence of nontoxic [Gd@C82(OH)22]n not only decreased the number of surviving CP-r cells but also inhibited growth of the CP-r tumors in athymic nude mice as measured by both optical and MRI. Labeling the CP-r PC-3 cells with transferrin, an endocytotic marker, demonstrated that pretreatment of the CP-r PC-3-luc cells with [Gd@C82(OH)22]n enhanced intracellular accumulation of cisplatin and formation of cisplatin-DNA adducts by restoring the defective endocytosis of the CP-r cancer cells. The results suggest that [Gd@C82(OH)22]n nanoparticles overcome tumor resistance to cisplatin by increasing its intracellular accumulation through the mechanism of restoring defective endocytosis. The technology can be extended to other challenges related to multidrug resistance often found in cancer treatments.


British Journal of Pharmacology | 2009

Pharmacodynamics and pharmacokinetics of SQ109, a new diamine‐based antitubercular drug

Lee Jia; Joseph E. Tomaszewski; Colleen Hanrahan; Lori Coward; Patricia E. Noker; Gregory S. Gorman; Boris Nikonenko; Marina Protopopova

1 SQ109 is a novel [1,2]‐diamine‐based ethambutol (EMB) analog developed from high‐throughput combinatorial screening. The present study aimed at characterizing its pharmacodynamics and pharmacokinetics. 2 The antimicrobial activity of SQ109 was confirmed in vitro (Mycobacterium tuberculosis‐infected murine macrophages) and in vivo (M. tuberculosis‐infected C57BL/6 mice) and compared to isoniazid (INH) and EMB. SQ109 showed potency and efficacy in inhibiting intracellular M. tuberculosis that was similar to INH, but superior to EMB. In vivo oral administration of SQ109 (0.1–25 mg kg−1 day−1) to the mice for 28 days resulted in dose‐dependent reductions of mycobacterial load in both spleen and lung comparable to that of EMB administered at 100 mg kg−1 day−1, but was less potent than INH at 25 mg kg−1 day−1. Monitoring of SQ109 levels in mouse tissues on days 1, 14 and 28 following 28‐day oral administration (10 mg kg−1 day−1) revealed that lungs and spleen contained the highest concentration of SQ109, at least 10 times above its MIC. 3 Pharmacokinetic profiles of SQ109 in mice following a single administration showed its Cmax as 1038 (intravenous (i.v.)) and 135 ng ml−1 (p.o.), with an oral Tmax of 0.31 h. The elimination t1/2 of SQ109 was 3.5 (i.v.) and 5.2 h (p.o.). The oral bioavailability was 4%. However, SQ109 displayed a large volume of distribution into various tissues. The highest concentration of SQ109 was present in lung (>MIC), which was at least 120‐fold (p.o.) and 180‐fold (i.v.) higher than that in plasma. The next ranked tissues were spleen and kidney. SQ109 levels in most tissues after a single administration were significantly higher than that in blood. High tissue concentrations of SQ109 persisted for the observation period (10 h). 4 This study demonstrated that SQ109 displays promising in vitro and in vivo antitubercular activity with favorable targeted tissue distribution properties.


Current Medicinal Chemistry | 2009

Current Evaluation of the Millennium Phytomedicine- Ginseng (I): Etymology, Pharmacognosy, Phytochemistry, Market and Regulations

Lee Jia; Yuqing Zhao

The dawning of this millennium broke new ground in life science and technology, presented us genomic and proteomic revolution, nanotechnology innovation, and high performance liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) used for separating and identifying new chemical entities at pico-, or even femto-concentrations. Applications of these high technologies to the traditional Chinese medicine (TCM) opened a new chapter in the ancient medicine, and prompted us to re-evaluate the thousand-year-old phytomedicine- ginseng from current perspectives. We, therefore, collected the latest information (mostly within 10 years) on ginseng, and condensed the information into two parts of this review serial. The present part covers etymology of ginseng, its pharmacognosy (natural origin, physical appearance, chemical properties, and specie identification), its cultivation and processing-related metabolic changes in active ingredients, standardized analytical methods used for quality control of various ginseng products, modern analytical methods used to identify and classify more than 100 chemical entities (many were recently unfolded) derived from ginseng species and their metabolites. The global markets and production of ginseng and relevant government regulations are herein updated to exchange information and understandings about current peoples uses and cultivation of ginseng. The second part of the review serial will classify all these 100 chemical entities separated from various ginseng species into different groups based on their structural similarities, and summarize bioactivities of these entities. The second part of the review serial will also focus on recent findings of ginseng pharmacology and its clinical trials for various diseases, and brief side effects of ginseng.


Cancer Research | 2011

Phase I Study of PARP Inhibitor ABT-888 in Combination with Topotecan in Adults with Refractory Solid Tumors and Lymphomas

Shivaani Kummar; Alice Chen; Jiuping Ji; Yiping Zhang; Joel M. Reid; Lee Jia; Marcie K. Weil; Giovanna Speranza; Anthony J. Murgo; Robert J. Kinders; Lihua Wang; Ralph E. Parchment; John Carter; Howard Stotler; Larry Rubinstein; Melinda G. Hollingshead; Giovanni Melillo; Yves Pommier; William M. Bonner; Joseph E. Tomaszewski; James H. Doroshow

A phase I trial of ABT-888 (veliparib), a PARP inhibitor, in combination with topotecan, a topoisomerase I-targeted agent, was carried out to determine maximum tolerated dose (MTD), safety, pharmacokinetics, and pharmacodynamics of the combination in patients with refractory solid tumors and lymphomas. Varying schedules and doses of intravenous topotecan in combination with ABT-888 (10 mg) administered orally twice a day (BID) were evaluated. Plasma and urine pharmacokinetics were assessed and levels of poly(ADP-ribose) (PAR) and the DNA damage marker γH2AX were measured in tumor and peripheral blood mononuclear cells (PBMC). Twenty-four patients were enrolled. Significant myelosuppression limited the ability to coadminister ABT-888 with standard doses of topotecan, necessitating dose reductions. Preclinical studies using athymic mice carrying human tumor xenografts also informed schedule changes. The MTD was established as topotecan 0.6 mg/m²/d and ABT-888 10 mg BID on days one to five of 21-day cycles. Topotecan did not alter the pharmacokinetics of ABT-888. A more than 75% reduction in PAR levels was observed in 3 paired tumor biopsy samples; a greater than 50% reduction was observed in PBMCs from 19 of 23 patients with measurable levels. Increases in γH2AX response in circulating tumor cells (CTC) and PBMCs were observed in patients receiving ABT-888 with topotecan. We show a mechanistic interaction of a PARP inhibitor, ABT-888, with a topoisomerase I inhibitor, topotecan, in PBMCs, tumor, and CTCs. Results of this trial reveal that PARP inhibition can modulate the capacity to repair topoisomerase I-mediated DNA damage in the clinic.


Current Drug Metabolism | 2007

The Conduct of Drug Metabolism Studies Considered Good Practice (II): In Vitro Experiments

Lee Jia; Xiaodong Liu

In vitro drug metabolism studies, which are inexpensive and readily carried out, serve as an adequate screening mechanism to characterize drug metabolites, elucidate their pathways, and make suggestions for further in vivo testing. This publication is a sequel to part I in a series and aims at providing a general framework to guide designs and protocols of the in vitro drug metabolism studies considered good practice in an efficient manner such that it would help researchers avoid common pitfalls and misleading results. The in vitro models include hepatic and non-hepatic microsomes, cDNA-expressed recombinant human CYPs expressed in insect cells or human B lymphoblastoid, chemical P450 inhibitors, S9 fraction, hepatocytes and liver slices. Important conditions for conducting the in vitro drug metabolism studies using these models are stated, including relevant concentrations of enzymes, co-factors, inhibitors and test drugs; time of incubation and sampling in order to establish kinetics of reactions; appropriate control settings, buffer selection and method validation. Separate in vitro data should be logically integrated to explain results from animal and human studies and to provide insights into the nature and consequences of in vivo drug metabolism. This article offers technical information and data and addresses scientific rationales and practical skills related to in vitro evaluation of drug metabolism to meet regulatory requirements for drug development.


Blood | 2008

Bcl-2 antagonist apogossypol (NSC736630) displays single-agent activity in Bcl-2–transgenic mice and has superior efficacy with less toxicity compared with gossypol (NSC19048)

Shinichi Kitada; Christina L. Kress; Maryla Krajewska; Lee Jia; Maurizio Pellecchia; John C. Reed

Altered expression of Bcl-2 family proteins plays central roles in apoptosis dysregulation in cancer and leukemia, promoting malignant cell expansion and contributing to chemoresistance. In this study, we compared the toxicity and efficacy in mice of natural product gossypol and its semisynthetic derivative apo-gossypol, compounds that bind and inhibit antiapoptotic Bcl-2 family proteins. Daily oral dosing studies showed that mice tolerate doses of apogossypol 2- to 4-times higher than gossypol. Hepatotoxicity and gastrointestinal toxicity represented the major adverse activities of gossypol, with apogossypol far less toxic. Efficacy was tested in transgenic mice in which Bcl-2 is overexpressed in B cells, resembling low-grade follicular lymphoma in humans. In vitro, Bcl-2-expressing B cells from transgenic mice were more sensitive to cytotoxicity induced by apogossypol than gossypol, with LD50 values of 3 to 5 microM and 7.5 to 10 microM, respectively. In vivo, using the maximum tolerated dose of gossypol for sequential daily dosing, apogossypol displayed superior activity to gossypol in terms of reducing splenomegaly and reducing B-cell counts in spleens of Bcl-2-transgenic mice. Taken together, these studies indicate that apogossypol is superior to parent compound gossypol with respect to toxicology and efficacy, suggesting that further development of this compound for cancer therapy is warranted.


Current Drug Metabolism | 2008

Biopharmaceutics and Therapeutic Potential of Engineered Nanomaterials

Xing-Jie Liang; Chunying Chen; Yuliang Zhao; Lee Jia; Paul C. Wang

Engineered nanomaterials are at the leading edge of the rapidly developing nanosciences and are founding an important class of new materials with specific physicochemical properties different from bulk materials with the same compositions. The potential for nanomaterials is rapidly expanding with novel applications constantly being explored in different areas. The unique size-dependent properties of nanomaterials make them very attractive for pharmaceutical applications. Investigations of physical, chemical and biological properties of engineered nanomaterials have yielded valuable information. Cytotoxic effects of certain engineered nanomaterials towards malignant cells form the basis for one aspect of nanomedicine. It is inferred that size, three dimensional shape, hydrophobicity and electronic configurations make them an appealing subject in medicinal chemistry. Their unique structure coupled with immense scope for derivatization forms a base for exciting developments in therapeutics. This review article addresses the fate of absorption, distribution, metabolism and excretion (ADME) of engineered nanoparticles in vitro and in vivo. It updates the distinctive methodology used for studying the biopharmaceutics of nanoparticles. This review addresses the future potential and safety concerns and genotoxicity of nanoparticle formulations in general. It particularly emphasizes the effects of nanoparticles on metabolic enzymes as well as the parenteral or inhalation administration routes of nanoparticle formulations. This paper illustrates the potential of nanomedicine by discussing biopharmaceutics of fullerene derivatives and their suitability for diagnostic and therapeutic purposes. Future direction is discussed as well.


British Journal of Pharmacology | 2006

Interspecies pharmacokinetics and in vitro metabolism of SQ109.

Lee Jia; Patricia E. Noker; Lori Coward; Gregory S. Gorman; Marina Protopopova; Joseph E. Tomaszewski

This study aimed at characterizing the interspecies absorption, distribution, metabolism and elimination (ADME) profile of N‐geranyl‐N′‐(2‐adamantyl)ethane‐1,2‐diamine (SQ109), a new diamine‐based antitubercular drug. Single doses of SQ109 were administered (intravenously (i.v.) and per os (p.o.)) to rodents and dogs and blood samples were analyzed by liquid chromatography tandem mass spectrometry (LC/MS/MS). Based on i.v. equivalent body surface area dose, the terminal half‐life (t1/2) of SQ109 in dogs was longer than that in rodents, reflected by a larger volume of distribution (Vss) and a higher clearance rate of SQ109 in dogs, compared to that in rodents. The oral bioavailability of SQ109 in dogs, rats and mice were 2.4–5, 12 and 3.8%, respectively. After oral administration of [14C]SQ109 to rats, the highest level of radioactivity was in the liver, followed by the lung, spleen and kidney. Tissue‐to‐blood ratios of [14C]SQ109 were greater than 1. Fecal elimination of [14C]SQ109 accounted for 22.2% of the total dose of [14C]SQ109, while urinary excretion accounted for only 5.6%. The binding of [14C]SQ109 (0.1–2.5 μg ml−1) to plasma proteins varied from 6 to 23% depending on the species (human, mouse, rat and dog). SQ109 was metabolized by rat, mouse, dog and human liver microsomes, resulting in 22.8, 48.4, 50.8 or 58.3%, respectively, of SQ109 remaining after a 10‐min incubation at 37°C. The predominant metabolites in the human liver microsomes gave intense ion signals at 195, 347 and 363m/z, suggesting the oxidation, epoxidation and N‐dealkylation of SQ109. P450 reaction phenotyping using recombinant cDNA‐expressed human CYPs in conjunction with specific CYP inhibitors indicated that CYP2D6 and CYP2C19 were the predominant CYPs involved in SQ109 metabolism.


Pharmaceutical Research | 2002

Effect of Nanonization on Absorption of 301029: Ex Vivo and In Vivo Pharmacokinetic Correlations Determined by Liquid Chromatography/Mass Spectrometry

Lee Jia; Hong Wong; Cesario Cerna; Steven Weitman

AbstractPurpose. To compare Caco-2 monolayer permeability and in vivo bioavailability of microparticle with nanoparticle 301029, a thiadiazole derivative, and to determine whether nanonization could improve oral bioavailability of the poorly soluble compound. Methods. The mean particle size of 301029 was reduced from 7 μm to 280 nm by pearl milling. In the ex vivo assay, both microparticle and nanoparticle 301029 at the same concentration were separately added to apical side and were collected from basolateral side of Caco-2 monolayer. In the bioavailability study, the two particle sizes of 301029 were orally administered to rats, respectively, and blood samples were collected. Nanoparticle 301029 in culture medium and rat serum was detected by a liquid chomatography-mass spectrometer (LC/MS) coupled with atmospheric pressure chemical ionization (APCI). Results. Permeability rate and permeated amounts of nanoparticle 301029 across the Caco-2 monolayer were about four times higher than those of microparticle 301029. In a pharmacokinetic study, nanoparticle 301029 showed Tmax about 1 h, whereas the microparticle 301029 showed Tmax at 4 h. The Cmax and AUC of nanoparticle 301029 were 3- to 4-fold greater than those of microparticle 301029, resulting in a significant increase in oral bioavailability of 301029 as compared with microparticle 301029. The ex vivo permeability and in vivo pharmacokinetic data indicate that nanoparticle formulation improves both absorption rate and absorption extent of the poorly soluble drug. Conclusions. Nanoparticle formulation enhances both Caco-2 monolayer permeability and rat oral bioavailability of the poorly soluble 301029. The result also demonstrates a close correlation between ex vivo Caco-2 permeability model and in vivo gastrointestinal absorption.


Biotechnology Advances | 2014

Nanotechnology-based intelligent drug design for cancer metastasis treatment

Yu Gao; Jingjing Xie; Haijun Chen; Songen Gu; Rongli Zhao; Jingwei Shao; Lee Jia

Traditional chemotherapy used today at clinics is mainly inherited from the thinking and designs made four decades ago when the Cancer War was declared. The potency of those chemotherapy drugs on in-vitro cancer cells is clearly demonstrated at even nanomolar levels. However, due to their non-specific effects in the body on normal tissues, these drugs cause toxicity, deteriorate patients life quality, weaken the host immunosurveillance system, and result in an irreversible damage to humans own recovery power. Owing to their unique physical and biological properties, nanotechnology-based chemotherapies seem to have an ability to specifically and safely reach tumor foci with enhanced efficacy and low toxicity. Herein, we comprehensively examine the current nanotechnology-based pharmaceutical platforms and strategies for intelligent design of new nanomedicines based on targeted drug delivery system (TDDS) for cancer metastasis treatment, analyze the pros and cons of nanomedicines versus traditional chemotherapy, and evaluate the importance that nanomaterials can bring in to significantly improve cancer metastasis treatment.

Collaboration


Dive into the Lee Jia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianzhong Chen

Fujian University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge