Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lee Ryan is active.

Publication


Featured researches published by Lee Ryan.


Hippocampus | 2000

Multiple Trace Theory of Human Memory: Computational, Neuroimaging, and Neuropsychological Results

Lynn Nadel; A. Samsonovich; Lee Ryan; Morris Moscovitch

Hippocampal‐neocortical interactions in memory have typically been characterized within the “standard model” of memory consolidation. In this view, memory storage initially requires hippocampal linking of dispersed neocortical storage sites, but over time this need dissipates, and the hippocampal component is rendered unnecessary. This change in function over time is held to account for the retorgrade amnesia (RA) gradients often seen in patients with hippocampal damage. Recent evidence, however, calls this standard model into question, and we have recently proposed a new approach, the “multiple memory trace” (MMT) theory. In this view, hippocampal ensembles are always involved in storage and retrieval of episodic information, but semantic (gist) information can be established in neocortex, and will survive damage to the hippocampal system if enough time has elapsed. This approach accounts more readily for the very long RA gradients often observed in amnesia. We report the results of analytic and connectionist simulations that demonstrate the feasibility of MMT. We also report a neuroimaging study showing that retrieval of very remote (25‐year‐old) memories elicits as much activation in hippocampus as retrieval of quite recent memories. Finally, we report new data from the study of patients with temporal lobe damage, using more sensitive measures than previously the case, showing that deficits in both episodic and spatial detail can bed observed even for very remote memories. Overall, these findings indicate that the standard model of memory consolidation, which views the hippocampus as having only a temporary role in memory, is wrong. Instead, the data support the view that for episodic and spatial detail the hippocampal system is always necessary. Hippocampus 10:352–368, 2000


Journal of Experimental Psychology: Learning, Memory and Cognition | 1990

Transfer-Appropriate Processing for Implicit and Explicit Memory

Peter Graf; Lee Ryan

To examine how feature-specific pattern-analysing processes affect implicit and explicit memory test performance, words were displayed for study and testing in 2 visually distinct formats: upside down vs. normal for Experiment 1, upside down vs. backward for Experiement 2, and in Applesoft pudgy vs. shadow typeface for Experiment 3. Implicit and explicit memory were assessed with word identification and recognition tests, respectively.


Human Brain Mapping | 2009

Structural brain differences and cognitive functioning related to body mass index in older females

Katrin Walther; Alex C. Birdsill; Elizabeth L. Glisky; Lee Ryan

Little is known about the effect of obesity on brain structures and cognition in healthy older adults. This study examined the association between body mass index (BMI), regional volume differences in gray and white matter measured by magnetic resonance imaging (MRI), and cognitive functioning in older females. Participants included 95 community‐dwelling older females (ages 52–92 years) who underwent extensive neuropsychological testing and high‐resolution MRI scanning. Optimized voxel‐based morphometry techniques were employed to determine the correlation between BMI and regional gray and white matter volumes. Volumes of significant regions were then correlated with cognitive functioning. Higher BMI was associated with decreased gray matter volumes in the left orbitofrontal, right inferior frontal, and right precentral gyri, a right posterior region including the parahippocampal, fusiform, and lingual gyri, and right cerebellar regions, as well as increased volumes of white matter in the frontal, temporal, and parietal lobes, even when hypertension was considered. Compared to normal weight women, obese women performed poorer on tests of executive functioning. Smaller gray matter volume in the left orbitofrontal region was associated with lower executive functioning. Additionally, despite the lack of significant group differences in memory and visuomotor speed, gray and white matter volumes predicted performance on these measures. The results provide additional evidence for a negative link between increased body fat and brain functioning in older females. Hum Brain Mapp, 2010.


Memory | 2006

The impact of stress on neutral and emotional aspects of episodic memory

Jessica D. Payne; Eric D. Jackson; Lee Ryan; Siobhan Hoscheidt; W. Jake Jacobs; Lynn Nadel

The present experiment demonstrates that exposure to a significant psychological stressor (administered before watching a slide show) preserves or even enhances memory for emotional aspects of an event, and simultaneously disrupts memory for non-emotional aspects of the same event. Stress exposure also disrupted memory for information that was visually and thematically central to the event depicted in the slide show. Memory for peripheral information, on the other hand, was unaffected by stress. These results are consistent with theories invoking differential effects of stress on brain systems responsible for encoding and retrieving emotional memories (the amygdala) and non-emotional memories (e.g., the hippocampal formation), and inconsistent with the view that memories formed under high levels of stress are qualitatively the same as those formed under ordinary emotional circumstances. These data, which are also consistent with results obtained in a number of studies using animals and humans, have implications for the traumatic memory debate and theories regarding human memory.


Behavioral Neuroscience | 2004

An fMRI study of episodic memory: retrieval of object, spatial, and temporal information.

Scott M. Hayes; Lee Ryan; David M. Schnyer; Lynn Nadel

Sixteen participants viewed a videotaped tour of 4 houses that highlighted a series of objects and their spatial locations. Participants were tested for memory of object, spatial, and temporal-order information while undergoing functional magnetic resonance imaging. Preferential activation was observed in the right parahippocampal gyrus during the retrieval of spatial-location information. Retrieval of contextual information (spatial location and temporal order) was associated with activation in the right dorsolateral prefrontal cortex. In bilateral posterior parietal regions, greater activation was associated with processing of visual scenes regardless of the memory judgment. These findings support current theories positing roles for frontal and medial temporal regions during episodic retrieval and suggest a specific role for the hippocampal complex in the retrieval of spatial-location information.


Neuropsychologia | 2008

Hippocampal Activation during Episodic and Semantic Memory Retrieval: Comparing Category Production and Category Cued Recall

Lee Ryan; Christine Cox; Scott M. Hayes; Lynn Nadel

Whether or not the hippocampus participates in semantic memory retrieval has been the focus of much debate in the literature. However, few neuroimaging studies have directly compared hippocampal activation during semantic and episodic retrieval tasks that are well matched in all respects other than the source of the retrieved information. In Experiment 1, we compared hippocampal fMRI activation during a classic semantic memory task, category production, and an episodic version of the same task, category cued recall. Left hippocampal activation was observed in both episodic and semantic conditions, although other regions of the brain clearly distinguished the two tasks. Interestingly, participants reported using retrieval strategies during the semantic retrieval task that relied on autobiographical and spatial information; for example, visualizing themselves in their kitchen while producing items for the category kitchen utensils. In Experiment 2, we considered whether the use of these spatial and autobiographical retrieval strategies could have accounted for the hippocampal activation observed in Experiment 1. Categories were presented that elicited one of three retrieval strategy types, autobiographical and spatial, autobiographical and nonspatial, and neither autobiographical nor spatial. Once again, similar hippocampal activation was observed for all three category types, regardless of the inclusion of spatial or autobiographical content. We conclude that the distinction between semantic and episodic memory is more complex than classic memory models suggest.


Journal of Cognitive Neuroscience | 2013

Spatial cognition and the hippocampus: The anterior-posterior axis

Lynn Nadel; Siobhan Hoscheidt; Lee Ryan

We discuss the question of differentiation along the anterior–posterior longitudinal axis of the hippocampus. Data from a recent fMRI study are reanalyzed to determine whether activations in these hippocampal regions are affected by the nature of the information being accessed during a scanning session in which participants thought about episodes from their lives. Retrieving detailed spatial relational information preferentially activated the posterior hippocampus, whereas retrieving information about locales (or contexts) preferentially activated the anterior hippocampus. These data support the view that there is functional differentiation along the longitudinal axis in humans that matches what has been seen in rats, namely, that the posterior (dorsal) hippocampus is crucial for precise spatial behavior, and the anterior (ventral) hippocampus is crucial for context coding.


Neural Plasticity | 2007

Autobiographical Memory Retrieval and Hippocampal Activation as a Function of Repetition and the Passage of Time

Lynn Nadel; Jenna Campbell; Lee Ryan

Multiple trace theory (MTT) predicts that hippocampal memory traces expand and strengthen as a function of repeated memory retrievals. We tested this hypothesis utilizing fMRI, comparing the effect of memory retrieval versus the mere passage of time on hippocampal activation. While undergoing fMRI scanning, participants retrieved remote autobiographical memories that had been previously retrieved either one month earlier, two days earlier, or multiple times during the preceding month. Behavioral analyses revealed that the number and consistency of memory details retrieved increased with multiple retrievals but not with the passage of time. While all three retrieval conditions activated a similar set of brain regions normally associated with autobiographical memory retrieval including medial temporal lobe structures, hippocampal activation did not change as a function of either multiple retrievals or the passage of time. However, activation in other brain regions, including the precuneus, lateral prefrontal cortex, parietal cortex, lateral temporal lobe, and perirhinal cortex increased after multiple retrievals, but was not influenced by the passage of time. These results have important implications for existing theories of long-term memory consolidation.


NeuroImage | 2011

Age-related differences in white matter integrity and cognitive function are related to APOE status

Lee Ryan; Katrin Walther; Barbara B. Bendlin; Lih-Fen Lue; Douglas G. Walker; Elizabeth L. Glisky

While an extensive literature is now available on age-related differences in white matter integrity measured by diffusion MRI, relatively little is known about the relationships between diffusion and cognitive functions in older adults. Even less is known about whether these relationships are influenced by the apolipoprotein (APOE) ε4 allele, despite growing evidence that ε4 increases cognitive impairment in older adults. The purpose of the present study was to examine these relationships in a group of community-dwelling cognitively normal older adults. Data were obtained from a sample of 126 individuals (ages 52-92) that included 32 ε4 heterozygotes, 6 ε4 homozygotes, and 88 noncarriers. Two measures of diffusion, the apparent diffusion coefficient (ADC) and fractional anisotropy (FA), were obtained from six brain regions-frontal white matter, lateral parietal white matter, the centrum semiovale, the genu and splenium of the corpus callosum, and the temporal stem white matter-and were used to predict composite scores of cognitive function in two domains, executive function and memory function. Results indicated that ADC and FA differed with increasing age in all six brain regions, and these differences were significantly greater for ε4 carriers compared to noncarriers. Importantly, after controlling for age, diffusion measures predicted cognitive function in a region-specific way that was also influenced by ε4 status. Regardless of APOE status, frontal ADC and FA independently predicted executive function scores for all participants, while temporal lobe ADC additionally predicted executive function for ε4 carriers but not noncarriers. Memory scores were predicted by temporal lobe ADC but not frontal diffusion for all participants, and this relationship was significantly stronger in ε4 carriers compared to noncarriers. Taken together, age and temporal lobe ADC accounted for a striking 53% of the variance in memory scores within the ε4 carrier group. The results provide further evidence that APOE ε4 has a significant impact on the trajectory of age-related cognitive functioning in older adults. Possible mechanisms are discussed that could account for the associations between ε4, diffusion, and cognitive function, including the influence of ε4 on neural repair, oxidative stress, and the health of myelin-producing oligodendroglia.


Behavioural Brain Research | 2010

Hippocampal activation during retrieval of spatial context from episodic and semantic memory

Siobhan Hoscheidt; Lynn Nadel; Jessica D. Payne; Lee Ryan

The hippocampus, a region implicated in the processing of spatial information and episodic memory, is central to the debate concerning the relationship between episodic and semantic memory. Studies of medial temporal lobe amnesic patients provide evidence that the hippocampus is critical for the retrieval of episodic but not semantic memory. On the other hand, recent neuroimaging studies of intact individuals report hippocampal activation during retrieval of both autobiographical memories and semantic information that includes historical facts, famous faces, and categorical information, suggesting that episodic and semantic memory may engage the hippocampus during memory retrieval in similar ways. Few studies have matched episodic and semantic tasks for the degree to which they include spatial content, even though spatial content may be what drives hippocampal activation during semantic retrieval. To examine this issue, we conducted a functional magnetic resonance imaging (fMRI) study in which retrieval of spatial and nonspatial information was compared during an episodic and semantic recognition task. Results show that the hippocampus (1) participates preferentially in the retrieval of episodic memories; (2) is also engaged by retrieval of semantic memories, particularly those that include spatial information. These data suggest that sharp dissociations between episodic and semantic memory may be overly simplistic and that the hippocampus plays a role in the retrieval of spatial content whether drawn from a memory of ones own life experiences or real-world semantic knowledge.

Collaboration


Dive into the Lee Ryan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katrin Walther

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Schnyer

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge