Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lee S. Katz is active.

Publication


Featured researches published by Lee S. Katz.


Genome Biology | 2008

Comparative analysis reveals signatures of differentiation amid genomic polymorphism in Lake Malawi cichlids

Yong-Hwee Eddie Loh; Lee S. Katz; Meryl C Mims; Thomas Kocher; Soojin V. Yi; J. Todd Streelman

BackgroundCichlid fish from East Africa are remarkable for phenotypic and behavioral diversity on a backdrop of genomic similarity. In 2006, the Joint Genome Institute completed low coverage survey sequencing of the genomes of five phenotypically and ecologically diverse Lake Malawi species. We report a computational and comparative analysis of these data that provides insight into the mechanisms that make closely related species different from one another.ResultsWe produced assemblies for the five species ranging in aggregate length from 68 to 79 megabase pairs, identified putative orthologs for more than 12,000 human genes, and predicted more than 32,000 cross-species single nucleotide polymorphisms (SNPs). Nucleotide diversity was lower than that found among laboratory strains of the zebrafish. We collected around 36,000 genotypes to validate a subset of SNPs within and among populations and across multiple individuals of about 75 Lake Malawi species. Notably, there were no fixed differences observed between focal species nor between major lineages. Roughly 3% to 5% of loci surveyed are statistical outliers for genetic differentiation (FST) within species, between species, and between major lineages. Outliers for FST are candidate genes that may have experienced a history of natural selection in the Malawi lineage.ConclusionWe present a novel genome sequencing strategy, which is useful when evolutionary diversity is the question of interest. Lake Malawi cichlids are phenotypically and behaviorally diverse, but they appear genetically like a subdivided population. The unique structure of Lake Malawl cichlid genomes should facilitate conceptually new experiments, employing SNPs to identity genotype-phenotype association, using the entire species flock as a mapping panel.


Clinical Infectious Diseases | 2016

Implementation of Nationwide Real-time Whole-genome Sequencing to Enhance Listeriosis Outbreak Detection and Investigation

Brendan R. Jackson; Cheryl L. Tarr; Errol Strain; Kelly A. Jackson; Amanda Conrad; Heather Carleton; Lee S. Katz; Steven Stroika; L. Hannah Gould; Rajal K. Mody; Benjamin J. Silk; Jennifer Beal; Yi Chen; Ruth Timme; Matthew Doyle; Angela Fields; Matthew E. Wise; Glenn Tillman; Stephanie Defibaugh-Chavez; Zuzana Kucerova; Ashley Sabol; Katie Roache; Eija Trees; Mustafa Simmons; Jamie Wasilenko; Kristy Kubota; Hannes Pouseele; William Klimke; John M. Besser; Eric W. Brown

Listeria monocytogenes (Lm) causes severe foodborne illness (listeriosis). Previous molecular subtyping methods, such as pulsed-field gel electrophoresis (PFGE), were critical in detecting outbreaks that led to food safety improvements and declining incidence, but PFGE provides limited genetic resolution. A multiagency collaboration began performing real-time, whole-genome sequencing (WGS) on all US Lm isolates from patients, food, and the environment in September 2013, posting sequencing data into a public repository. Compared with the year before the project began, WGS, combined with epidemiologic and product trace-back data, detected more listeriosis clusters and solved more outbreaks (2 outbreaks in pre-WGS year, 5 in WGS year 1, and 9 in year 2). Whole-genome multilocus sequence typing and single nucleotide polymorphism analyses provided equivalent phylogenetic relationships relevant to investigations; results were most useful when interpreted in context of epidemiological data. WGS has transformed listeriosis outbreak surveillance and is being implemented for other foodborne pathogens.


Mbio | 2013

Evolutionary dynamics of Vibrio cholerae O1 following a single-source introduction to Haiti

Lee S. Katz; Aaron Petkau; John Beaulaurier; Shaun Tyler; Elena S. Antonova; Maryann Turnsek; Yan Guo; Susana Wang; Ellen E. Paxinos; Fabini D. Orata; Lori Gladney; Steven Stroika; Jason P. Folster; Lori A. Rowe; Molly M. Freeman; Natalie Knox; Mike Frace; Jacques Boncy; Morag Graham; Brian K. Hammer; Yan Boucher; Ali Bashir; William P. Hanage; Gary Van Domselaar; Cheryl L. Tarr

ABSTRACT Prior to the epidemic that emerged in Haiti in October of 2010, cholera had not been documented in this country. After its introduction, a strain of Vibrio cholerae O1 spread rapidly throughout Haiti, where it caused over 600,000 cases of disease and >7,500 deaths in the first two years of the epidemic. We applied whole-genome sequencing to a temporal series of V. cholerae isolates from Haiti to gain insight into the mode and tempo of evolution in this isolated population of V. cholerae O1. Phylogenetic and Bayesian analyses supported the hypothesis that all isolates in the sample set diverged from a common ancestor within a time frame that is consistent with epidemiological observations. A pangenome analysis showed nearly homogeneous genomic content, with no evidence of gene acquisition among Haiti isolates. Nine nearly closed genomes assembled from continuous-long-read data showed evidence of genome rearrangements and supported the observation of no gene acquisition among isolates. Thus, intrinsic mutational processes can account for virtually all of the observed genetic polymorphism, with no demonstrable contribution from horizontal gene transfer (HGT). Consistent with this, the 12 Haiti isolates tested by laboratory HGT assays were severely impaired for transformation, although unlike previously characterized noncompetent V. cholerae isolates, each expressed hapR and possessed a functional quorum-sensing system. Continued monitoring of V. cholerae in Haiti will illuminate the processes influencing the origin and fate of genome variants, which will facilitate interpretation of genetic variation in future epidemics. IMPORTANCE Vibrio cholerae is the cause of substantial morbidity and mortality worldwide, with over three million cases of disease each year. An understanding of the mode and rate of evolutionary change is critical for proper interpretation of genome sequence data and attribution of outbreak sources. The Haiti epidemic provides an unprecedented opportunity to study an isolated, single-source outbreak of Vibrio cholerae O1 over an established time frame. By using multiple approaches to assay genetic variation, we found no evidence that the Haiti strain has acquired any genes by horizontal gene transfer, an observation that led us to discover that it is also poorly transformable. We have found no evidence that environmental strains have played a role in the evolution of the outbreak strain. Vibrio cholerae is the cause of substantial morbidity and mortality worldwide, with over three million cases of disease each year. An understanding of the mode and rate of evolutionary change is critical for proper interpretation of genome sequence data and attribution of outbreak sources. The Haiti epidemic provides an unprecedented opportunity to study an isolated, single-source outbreak of Vibrio cholerae O1 over an established time frame. By using multiple approaches to assay genetic variation, we found no evidence that the Haiti strain has acquired any genes by horizontal gene transfer, an observation that led us to discover that it is also poorly transformable. We have found no evidence that environmental strains have played a role in the evolution of the outbreak strain.


Nature microbiology | 2017

Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes

Alexandra Moura; Alexis Criscuolo; Hannes Pouseele; Mylène M. Maury; Alexandre Leclercq; Cheryl L. Tarr; Jonas T. Björkman; Timothy J. Dallman; Aleisha Reimer; Vincent Enouf; Elise Larsonneur; Heather Carleton; Hélène Bracq-Dieye; Lee S. Katz; Louis M. Jones; Marie Touchon; Mathieu Tourdjman; Matthew Walker; Steven Stroika; Thomas Cantinelli; Viviane Chenal-Francisque; Zuzana Kucerova; Eduardo P. C. Rocha; Celine Nadon; Kathie Grant; Eva Møller Nielsen; Bruno Pot; Peter Gerner-Smidt; Marc Lecuit; Sylvain Brisse

Listeria monocytogenes (Lm) is a major human foodborne pathogen. Numerous Lm outbreaks have been reported worldwide and associated with a high case fatality rate, reinforcing the need for strongly coordinated surveillance and outbreak control. We developed a universally applicable genome-wide strain genotyping approach and investigated the population diversity of Lm using 1,696 isolates from diverse sources and geographical locations. We define, with unprecedented precision, the population structure of Lm, demonstrate the occurrence of international circulation of strains and reveal the extent of heterogeneity in virulence and stress resistance genomic features among clinical and food isolates. Using historical isolates, we show that the evolutionary rate of Lm from lineage I and lineage II is low (∼2.5 × 10−7 substitutions per site per year, as inferred from the core genome) and that major sublineages (corresponding to so-called ‘epidemic clones’) are estimated to be at least 50–150 years old. This work demonstrates the urgent need to monitor Lm strains at the global level and provides the unified approach needed for global harmonization of Lm genome-based typing and population biology.


Emerging Infectious Diseases | 2013

Novel Epidemic Clones of Listeria monocytogenes, United States, 2011

Sara Lomonaco; Bindhu Verghese; Peter Gerner-Smidt; Cheryl L. Tarr; Lori Gladney; Lavin A. Joseph; Lee S. Katz; Maryann Turnsek; Michael Frace; Yi Chen; Eric L. Brown; Richard J. Meinersmann; M. E. Berrang; Stephen J. Knabel

We identified a novel serotype 1/2a outbreak strain and 2 novel epidemic clones of Listeria monocytogenes while investigating a foodborne outbreak of listeriosis associated with consumption of cantaloupe during 2011 in the United States. Comparative analyses of strains worldwide are essential to identification of novel outbreak strains and epidemic clones.


Bioinformatics | 2010

A computational genomics pipeline for prokaryotic sequencing projects

Andrey O. Kislyuk; Lee S. Katz; Sonia Agrawal; Matthew S. Hagen; Andrew B. Conley; Pushkala Jayaraman; Viswateja Nelakuditi; Jay C. Humphrey; Scott Sammons; Dhwani Govil; Raydel Mair; Kathleen M. Tatti; Maria L. Tondella; Brian H. Harcourt; Leonard W. Mayer; I. King Jordan

Motivation: New sequencing technologies have accelerated research on prokaryotic genomes and have made genome sequencing operations outside major genome sequencing centers routine. However, no off-the-shelf solution exists for the combined assembly, gene prediction, genome annotation and data presentation necessary to interpret sequencing data. The resulting requirement to invest significant resources into custom informatics support for genome sequencing projects remains a major impediment to the accessibility of high-throughput sequence data. Results: We present a self-contained, automated high-throughput open source genome sequencing and computational genomics pipeline suitable for prokaryotic sequencing projects. The pipeline has been used at the Georgia Institute of Technology and the Centers for Disease Control and Prevention for the analysis of Neisseria meningitidis and Bordetella bronchiseptica genomes. The pipeline is capable of enhanced or manually assisted reference-based assembly using multiple assemblers and modes; gene predictor combining; and functional annotation of genes and gene products. Because every component of the pipeline is executed on a local machine with no need to access resources over the Internet, the pipeline is suitable for projects of a sensitive nature. Annotation of virulence-related features makes the pipeline particularly useful for projects working with pathogenic prokaryotes. Availability and implementation: The pipeline is licensed under the open-source GNU General Public License and available at the Georgia Tech Neisseria Base (http://nbase.biology.gatech.edu/). The pipeline is implemented with a combination of Perl, Bourne Shell and MySQL and is compatible with Linux and other Unix systems. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Journal of Clinical Microbiology | 2012

Haemophilus haemolyticus Isolates Causing Clinical Disease

Raydel Anderson; Xin Wang; Elizabeth C. Briere; Lee S. Katz; Amanda C. Cohn; Thomas A. Clark; Nancy E. Messonnier; Leonard W. Mayer

ABSTRACT We report seven cases of Haemophilus haemolyticus invasive disease detected in the United States, which were previously misidentified as nontypeable Haemophilus influenzae. All cases had different symptoms and presentations. Our study suggests that a testing scheme that includes reliable PCR assays and standard microbiological methods should be used in order to improve H. haemolyticus identification.


Journal of Clinical Microbiology | 2012

Evaluation of New Biomarker Genes for Differentiating Haemophilus influenzae from Haemophilus haemolyticus

M. Jordan Theodore; Raydel Anderson; Xin Wang; Lee S. Katz; Jeni T. Vuong; Melissa E. Bell; Billie A. Juni; Sara A. Lowther; Ruth Lynfield; Jessica R. MacNeil; Leonard W. Mayer

ABSTRACT PCR detecting the protein D (hpd) and fuculose kinase (fucK) genes showed high sensitivity and specificity for identifying Haemophilus influenzae and differentiating it from H. haemolyticus. Phylogenetic analysis using the 16S rRNA gene demonstrated two distinct groups for H. influenzae and H. haemolyticus.


Journal of Bacteriology | 2012

Genome Sequences for Six Rhodanobacter Strains, Isolated from Soils and the Terrestrial Subsurface, with Variable Denitrification Capabilities

Joel E. Kostka; Stefan J. Green; Lavanya Rishishwar; Om Prakash; Lee S. Katz; Leonardo Mariño-Ramírez; I. King Jordan; Christine Munk; Natalia Ivanova; Natalia Mikhailova; David B. Watson; Steven D. Brown; Anthony V. Palumbo; Scott C. Brooks

We report the first genome sequences for six strains of Rhodanobacter species isolated from a variety of soil and subsurface environments. Three of these strains are capable of complete denitrification and three others are not. However, all six strains contain most of the genes required for the respiration of nitrate to gaseous nitrogen. The nondenitrifying members of the genus lack only the gene for nitrate reduction, the first step in the full denitrification pathway. The data suggest that the environmental role of bacteria from the genus Rhodanobacter should be reevaluated.


Applied and Environmental Microbiology | 2016

Determination of Evolutionary Relationships of Outbreak-Associated Listeria monocytogenes Strains of Serotypes 1/2a and 1/2b by Whole-Genome Sequencing

Teresa M. Bergholz; Henk C. den Bakker; Lee S. Katz; Benjamin J. Silk; Kelly A. Jackson; Zuzana Kucerova; Lavin A. Joseph; Maryann Turnsek; Lori Gladney; Jessica L. Halpin; Karen Xavier; Joseph Gossack; Todd J. Ward; Michael Frace; Cheryl L. Tarr

ABSTRACT We used whole-genome sequencing to determine evolutionary relationships among 20 outbreak-associated clinical isolates of Listeria monocytogenes serotypes 1/2a and 1/2b. Isolates from 6 of 11 outbreaks fell outside the clonal groups or “epidemic clones” that have been previously associated with outbreaks, suggesting that epidemic potential may be widespread in L. monocytogenes and is not limited to the recognized epidemic clones. Pairwise comparisons between epidemiologically related isolates within clonal complexes showed that genome-level variation differed by 2 orders of magnitude between different comparisons, and the distribution of point mutations (core versus accessory genome) also varied. In addition, genetic divergence between one closely related pair of isolates from a single outbreak was driven primarily by changes in phage regions. The evolutionary analysis showed that the changes could be attributed to horizontal gene transfer; members of the diverse bacterial community found in the production facility could have served as the source of novel genetic material at some point in the production chain. The results raise the question of how to best utilize information contained within the accessory genome in outbreak investigations. The full magnitude and complexity of genetic changes revealed by genome sequencing could not be discerned from traditional subtyping methods, and the results demonstrate the challenges of interpreting genetic variation among isolates recovered from a single outbreak. Epidemiological information remains critical for proper interpretation of nucleotide and structural diversity among isolates recovered during outbreaks and will remain so until we understand more about how various population histories influence genetic variation.

Collaboration


Dive into the Lee S. Katz's collaboration.

Top Co-Authors

Avatar

Cheryl L. Tarr

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

I. King Jordan

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian H. Harcourt

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Heather A. Carleton

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Steven Stroika

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Xin Wang

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Zuzana Kucerova

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Kelly A. Jackson

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Maryann Turnsek

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge