Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leela E. Rao is active.

Publication


Featured researches published by Leela E. Rao.


Journal of Environmental Management | 2010

Nitrogen critical loads and management alternatives for N-impacted ecosystems in California

Mark E. Fenn; Edith B. Allen; S.B. Weiss; Sarah E. Jovan; Linda H. Geiser; G.S. Tonnesen; R.F. Johnson; Leela E. Rao; B.S. Gimeno; Fengming Yuan; Thomas Meixner; Andrzej Bytnerowicz

Empirical critical loads for N deposition effects and maps showing areas projected to be in exceedance of the critical load (CL) are given for seven major vegetation types in California. Thirty-five percent of the land area for these vegetation types (99,639 km(2)) is estimated to be in excess of the N CL. Low CL values (3-8 kg N ha(-1) yr(-1)) were determined for mixed conifer forests, chaparral and oak woodlands due to highly N-sensitive biota (lichens) and N-poor or low biomass vegetation in the case of coastal sage scrub (CSS), annual grassland, and desert scrub vegetation. At these N deposition critical loads the latter three ecosystem types are at risk of major vegetation type change because N enrichment favors invasion by exotic annual grasses. Fifty-four and forty-four percent of the area for CSS and grasslands are in exceedance of the CL for invasive grasses, while 53 and 41% of the chaparral and oak woodland areas are in exceedance of the CL for impacts on epiphytic lichen communities. Approximately 30% of the desert (based on invasive grasses and increased fire risk) and mixed conifer forest (based on lichen community changes) areas are in exceedance of the CL. These ecosystems are generally located further from emissions sources than many grasslands or CSS areas. By comparison, only 3-15% of the forested and chaparral land areas are estimated to be in exceedance of the NO(3)(-) leaching CL. The CL for incipient N saturation in mixed conifer forest catchments was 17 kg N ha(-1) yr(-1). In 10% of the CL exceedance areas for all seven vegetation types combined, the CL is exceeded by at least 10 kg N ha(-1) yr(-1), and in 27% of the exceedance areas the CL is exceeded by at least 5 kg N ha(-1) yr(-1). Management strategies for mitigating the effects of excess N are based on reducing N emissions and reducing site N capital through approaches such as biomass removal and prescribed fire or control of invasive grasses by mowing, selective herbicides, weeding or domestic animal grazing. Ultimately, decreases in N deposition are needed for long-term ecosystem protection and sustainability, and this is the only strategy that will protect epiphytic lichen communities.


Ecological Applications | 2010

Risk-based determination of critical nitrogen deposition loads for fire spread in southern California deserts.

Leela E. Rao; Edith B. Allen; Thomas Meixner

Fire risk in deserts is increased by high production of annual forbs and invasive grasses that create a continuous fine fuel bed in the interspaces between shrubs. Interspace production is influenced by water, nitrogen (N) availability, and soil texture, and in some areas N availability is increasing due to anthropogenic N deposition. The DayCent model was used to investigate how production of herbaceous annuals changes along gradients of precipitation, N availability, and soil texture, and to develop risk-based critical N loads. DayCent was parameterized for two vegetation types within Joshua Tree National Park, California, USA: creosote bush (CB) and piñon-juniper (PJ). The model was successfully calibrated in both vegetation types, but validation showed that the model is sensitive to soil clay content. Despite this fact, DayCent (the daily version of the biogeochemical model CENTURY) performed well in predicting the relative response of production to N fertilization and was used to determine estimates of fire risk for these ecosystems. Fire risk, the probability that annual biomass exceeds the fire threshold of 1000 kg/ha, was determined for each vegetation type and began to increase when N deposition increased 0.05 g/m2 above background levels (0.1 g/m2). Critical loads were calculated as the amount of N deposition at the point when fire risk began to increase exponentially. Mean critical loads for all soil types and precipitation <21 cm/yr, representing the majority of our study region, were 0.32 +/- 0.07 and 0.39 +/- 0.09 g N/m2 for CB and PJ, respectively. Critical loads decreased with increasing soil clay content and increasing precipitation, such that the wettest areas with clay contents of 6-14% may have critical loads as low as 0.15 g N/m2. Mean fire risks approached their maximum at 0.93 +/- 0.21 and 0.87 +/- 0.17 g N/m2 in CB and PJ, indicating that precipitation is the driver of fire above these N deposition levels, which are currently observed in some areas of the Sonoran and Mojave Deserts. Overall, this analysis demonstrates the importance of considering both N deposition and precipitation when evaluating fire risk across arid landscapes.


The Scientific World Journal | 2007

Patterns of understory diversity in mixed coniferous forests of southern California impacted by air pollution.

Edith B. Allen; Patrick J. Temple; Andrzej Bytnerowicz; Michael J. Arbaugh; Abby G. Sirulnik; Leela E. Rao

The forests of the San Bernardino Mountains have been subject to ozone and nitrogen (N) deposition for some 60 years. Much work has been done to assess the impacts of these pollutants on trees, but little is known about how the diverse understory flora has fared. Understory vegetation has declined in diversity in response to elevated N in the eastern U.S. and Europe. Six sites along an ozone and N deposition gradient that had been part of a long-term study on response of plants to air pollution beginning in 1973 were resampled in 2003. Historic ozone data and leaf injury scores confirmed the gradient. Present-day ozone levels were almost half of these, and recent atmospheric N pollution concentrations confirmed the continued air pollution gradient. Both total and extractable soil N were higher in sites on the western end of the gradient closer to the urban source of pollution, pH was lower, and soil carbon (C) and litter were higher. The gradient also had decreasing precipitation and increasing elevation from west to east. However, the dominant tree species were the same across the gradient. Tree basal area increased during the 30-year interval in five of the sites. The two westernmost sites had 30–45% cover divided equally between native and exotic understory herbaceous species, while the other sites had only 3–13% cover dominated by native species. The high production is likely related to higher precipitation at the western sites as well as elevated N. The species richness was in the range of 24 to 30 in four of the sites, but one site of intermediate N deposition had 42 species, while the easternmost, least polluted site had 57 species. These were primarily native species, as no site had more than one to three exotic species. In three of six sites, 20–40% of species were lost between 1973 and 2003, including the two westernmost sites. Two sites with intermediate pollution had little change in total species number over 30 years, and the easternmost site had more species in 2003. The easternmost site is also the driest and has the most sunlight filtering to the forest floor, possibly accounting for the higher species richness. The confounding effects of the precipitation gradient and possibly local disturbances do not show a simple correlation of air pollution with patterns of native and invasive species cover and richness. Nevertheless, the decline of native species and dominance by exotic species in the two westernmost polluted sites is cause for concern that air pollution is affecting the understory vegetation adversely.


Plant Ecology | 2011

Effects of natural and anthropogenic gradients on native and exotic winter annuals in a southern California Desert.

Leela E. Rao; Robert J. Steers; Edith B. Allen

Native annual plant species constitute a large proportion of the plant diversity found in arid vegetation types within the southwestern United States; yet, little is known about controls on diversity patterns along natural and anthropogenic gradients. In this study we evaluated native species richness and exotic species cover across overlapping gradients of precipitation, wind, and N deposition in the Colorado Desert of southern California. Factors allowing native diversity to persist under high N deposition and high wind were also evaluated in a second, focused study at one end of the gradient. We found that gradients in precipitation, nitrogen deposition, and wind were the most important factors to native richness and exotic species cover across the landscape, while local heterogeneity in bare ground influenced richness and cover at the high deposition/windy, or high-disturbance, end of the gradient. Patterns of native diversity were evaluated across the gradients using non-metric multidimensional scaling, which showed diversity was split into two axes: one strongly correlated to precipitation and the other strongly correlated with disturbance factors. The disturbance factors were also positively associated with exotic grass and forb cover. In total, these results indicate that large-scale patterns in disturbance and exotic species cover negatively affect native annual plant species diversity but native species can also persist due to local heterogeneity.


International Journal of Wildland Fire | 2015

Relationships between annual plant productivity, nitrogen deposition and fire size in low-elevation California desert scrub

Leela E. Rao; John R. Matchett; Matthew L. Brooks; Robert F. Johnson; Richard A. Minnich; Edith B. Allen

Although precipitation is correlated with fire size in desert ecosystems and is typically used as an indirect surrogate for fine fuel load, a direct link between fine fuel biomass and fire size has not been established. In addition, nitrogen (N) deposition can affect fire risk through its fertilisation effect on fine fuel production. In this study, we examine the relationships between fire size and precipitation, N deposition and biomass with emphasis on identifying biomass and N deposition thresholds associated with fire spreading across the landscape. We used a 28-year fire record of 582 burns from low-elevation desert scrub to evaluate the relationship of precipitation, N deposition and biomass with the distribution of fire sizes using quantile regression. We found that models using annual biomass have similar predictive ability to those using precipitation and N deposition at the lower to intermediate portions of the fire size distribution. No distinct biomass threshold was found, although within the 99th percentile of the distribution fire size increased with greater than 125 g m–2 of winter fine fuel production. The study did not produce an N deposition threshold, but did validate the value of 125 g m–2 of fine fuel for spread of fires.


In: de Vries, Wim; Hettelingh, Jean-Paul; Posch, Maximilian, eds. Critical loads and dynamic risk assessments: nitrogen, acidity and metals in terrestrial and aquatic ecosystems. Dordrecht, Netherlands: Springer Science+Business Media B.V.: 269-295. Chapter 10. | 2015

Use of Combined Biogeochemical Model Approaches and Empirical Data to Assess Critical Loads of Nitrogen

Mark E. Fenn; Charles T. Driscoll; Qingtao Zhou; Leela E. Rao; Thomas Meixner; Edith B. Allen; Fengming Yuan; Timothy J. Sullivan

Empirical and dynamic biogeochemical modelling are complementary approaches for determining the critical load (CL) of atmospheric nitrogen (N) or other constituent deposition that an ecosystem can tolerate without causing ecological harm. The greatest benefits are obtained when these approaches are used in combination. Confounding environmental factors can complicate the determination of empirical CLs across depositional gradients, while the experimental application of N amendments for estimating the CL does not realistically mimic the effects of chronic atmospheric N deposition. Biogeochemical and vegetation simulation models can provide CL estimates and valuable ecosystem response information, allowing for past and future scenario testing with various combinations of environmental factors, pollutants, pollutant control options, land management, and ecosystem response parameters. Even so, models are fundamentally gross simplifications of the real ecosystems they attempt to simulate. Empirical approaches are vital as a check on simulations and CL estimates, to parameterize models, and to elucidate mechanisms and responses under real world conditions. In this chapter, we provide examples of empirical and modelled N CL approaches in ecosystems from three regions of the United States: mixed conifer forest, desert scrub and pinyon-juniper woodland in California; alpine catchments in the Rocky Mountains; and lakes in the Adirondack region of New York state.


In: Sutton, M.A. et al., eds. Nitrogen Deposition, Critical Loads and Biodiversity. Netherlands: Springer: 319-327. Chapter 34 | 2014

Using Fire Risk and Species Loss to set Critical Loads for Nitrogen Deposition in Southern California Shrublands

Edith B. Allen; Leela E. Rao; Gail S. Tonnesen; Robert F. Johnson; Mark E. Fenn; Andrzej Bytnerowicz

Southern California deserts and coastal sage scrub (CSS) are undergoing vegetation-type conversion to exotic annual grassland, especially in regions downwind of urban areas that receive high nitrogen (N), primarily as dry deposition. To determine critical loads (CLs) of N that cause negative impacts, we measured plant and soil responses along N deposition gradients, fertilized vegetation at different N levels, and used biomass production output from the DayCent model. Nitrogen deposition gradients were identified from the CMAQ model and compared with measured N deposition values. Coastal sage scrub receives N deposition as high as 30 kg ha− 1 year− 1, while the desert has levels up to 16 kg ha− 1 year− 1. These ecosystems are subject to increases in exotic species production, loss of native species diversity, and increased fire risk at relatively low CLs. For instance, a gradient survey in CSS showed that exotic grass cover increased and native plant species richness declined by almost 50 % above 10 kg N ha − 1 year− 1. Fertilization studies in desert creosote bush scrub showed a significant increase in exotic species biomass with 5 kg N ha− 1 year− 1 in a wet year, and biomass output from DayCent modelling indicated an increased fire risk from exotic grasses with 1 t per ha production during years with moderate to high precipitation at 2.2–8.8 kg N ha− 1 year− 1. The difference in CL between desert and CSS is related to the different criteria used (diversity loss in CSS, productivity and fire risk in desert), as well as responsiveness of native vs. exotic plant species to N and the degree to which precipitation and soil N limits plant growth in the two vegetation types.


Oecologia | 2010

Combined effects of precipitation and nitrogen deposition on native and invasive winter annual production in California deserts

Leela E. Rao; Edith B. Allen


Journal of Arid Environments | 2009

Nitrogen mineralization across an atmospheric nitrogen deposition gradient in Southern California deserts.

Leela E. Rao; D.R. Parker; Andrzej Bytnerowicz; Edith B. Allen


Archive | 2008

Empirical and modeling approaches to setting critical loads for N deposition in southern California shrublands

Edith B. Allen; Leela E. Rao; Mark E. Fenn; Andrzej Bytnerowicz; Gail S. Tonnesen

Collaboration


Dive into the Leela E. Rao's collaboration.

Top Co-Authors

Avatar

Edith B. Allen

University of California

View shared research outputs
Top Co-Authors

Avatar

Andrzej Bytnerowicz

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Mark E. Fenn

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fengming Yuan

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.R. Parker

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge