Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leen Lootens is active.

Publication


Featured researches published by Leen Lootens.


Clinical Chemistry | 2009

uPA+/+-SCID Mouse with Humanized Liver as a Model for In Vivo Metabolism of Exogenous Steroids: Methandienone as a Case Study

Leen Lootens; Philip Meuleman; Oscar J. Pozo; Peter Van Eenoo; Geert Leroux-Roels; Frans Delbeke

BACKGROUND Adequate detection of designer steroids in the urine of athletes is still a challenge in doping control analysis and requires knowledge of steroid metabolism. In this study we investigated whether uPA(+/+)-SCID mice carrying functional primary human hepatocytes in their liver would provide a suitable alternative small animal model for the investigation of human steroid metabolism in vivo. METHODS A quantitative method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated for the urinary detection of 7 known methandienone metabolites. Application of this method to urine samples from humanized mice after methandienone administration allowed for comparison with data from in vivo human samples and with reported methandienone data from in vitro hepatocyte cultures. RESULTS The LC-MS/MS method validation in mouse and human urine indicated good linearity, precision, and recovery. Using this method we quantified 6 of 7 known human methandienone metabolites in the urine of chimeric mice, whereas in control nonchimeric mice we detected only 2 metabolites. These results correlated very well with methandienone metabolism in humans. In addition, we detected 4 isomers of methandienone metabolites in both human and chimeric mouse urine. One of these isomers has never been reported before. CONCLUSIONS The results of this proof-of-concept study indicate that the human liver-uPA(+/+)-SCID mouse appears to be a suitable small animal model for the investigation of human-type metabolism of anabolic steroids and possibly also for other types of drugs and medications.


Drug Metabolism and Disposition | 2009

Detection and characterization of a new metabolite of 17α-methyltestosterone.

Oscar J. Pozo; Peter Van Eenoo; Koen Deventer; Leen Lootens; Wim Van Thuyne; Maria Kristina Parr; Wilhelm Schänzer; Juan V. Sancho; Félix Hernández; Philip Meuleman; Geert Leroux-Roels; Frans Delbeke

The misuse of the anabolic steroid methyltestosterone is currently routinely monitored in doping control laboratories by gas chromatography-mass spectrometry (GC-MS) of two of its metabolites: 17α-methyl-5β-androstane-3α,17β-diol and 17α-methyl-5α-androstane-3α,17β-diol. Because of the absence of any easy ionizable moiety, these metabolites are poorly detectable using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI). In this study, the metabolism of methyltestosterone has been reinvestigated by the use of a precursor ion scan method in LC-ESI-MS/MS. Two metabolites have been detected using this method. Both compounds have been confirmed in postadministration urine samples of an urokinase plasminogen activator-severe combined immunodeficiency (uPA-SCID) mouse with humanized liver and were characterized by LC-MS/MS and GC-MS using both quadrupole and time of flight analyzers. From the detailed study of the fragmentation, these metabolites were proposed to be epimethyltestosterone and a dehydrogenated compound. Epimethyltestosterone has previously been described as a minor metabolite, whereas the occurrence of the oxidized metabolite has not been reported. Comparison with the synthesized reference revealed that the structure of the dehydrogenated metabolite is 6-ene-epimethyltestosterone. A selected reaction monitoring method including three transitions for each metabolite has been developed and applied to samples from an excretion study and to samples declared positive after GC-MS analysis. 6-Ene-epimethyltestosterone was found in all samples, showing its applicability in the detection of methyltestosterone misuse.


Rapid Communications in Mass Spectrometry | 2013

In vivo and in vitro metabolism of the synthetic cannabinoid JWH‐200

Nik De Brabanter; Simone Esposito; Eva Tudela; Leen Lootens; Philip Meuleman; Geert Leroux-Roels; Koen Deventer; Peter Van Eenoo

RATIONALE The synthetic cannabinoid JWH-200 (1-[2-(4-morpholinyl)ethyl]-3-(1-naphthoyl)-indole) appeared on the market around 2009. In order to identify markers for misuse of this compound and allow for the development of adequate routine methods, the metabolism of this compound was investigated using two models. METHODS In vitro and in vivo (both with and without enzymatic hydrolysis) samples were purified by solid-phase extraction and analyzed using liquid chromatography. Electrospray ionization high-resolution Orbitrap mass spectrometry was used for the identification of the metabolites. To confirm the results in vivo, triple-quadrupole mass spectrometry was employed RESULTS In the in vitro model, using human liver microsomes, 22 metabolites were detected which could be divided into 11 metabolite classes. By using the chimeric mouse model with humanized liver, most of these metabolites were confirmed in vivo. It was found that all metabolites are excreted in urine as conjugates, mostly as glucuronides with varying conjugation rates. CONCLUSIONS The metabolite formed by consecutive morpholine cleavage and oxidation of the remaining side chain to a carboxylic group was detected in the highest amounts with the longest detection time. Therefore, it is the best candidate metabolite to detect JWH-200 abuse in urine.


The Journal of Steroid Biochemistry and Molecular Biology | 2011

Metabolic studies with promagnon, methylclostebol and methasterone in the uPA+/+-SCID chimeric mice.

Leen Lootens; Philip Meuleman; Geert Leroux-Roels; P. Van Eenoo

The chimeric uPA(+/+)-SCID mouse model, transplanted with human hepatocytes, was previously validated as an alternative tool to study in vivo the human steroid metabolism. This humanized mouse model was now applied, in the framework of anti-doping research, to test different nutritional supplements containing steroids. These steroids, intentionally or accidentally added to a nutritional supplement, usually are derivatives of testosterone. Information about the metabolism of these derivatives, which is important to assure their detection, is quite limited. However, due to ethical constraints, human volunteers cannot be used to perform experimental excretion studies. Therefore the chimeric mice were selected to perform three separated excretion studies with superdrol (methasterone), promagnon and also methylclostebol. The urine of the humanized mice was collected 24h after a single dose administration and analyzed by gas chromatography-mass spectrometry (GC-MS). The results indicated the presence of several metabolites including a 3-keto reduced metabolite and numerous hydroxylated metabolites. Also phase 2 metabolism was investigated to update the complete picture of their metabolism.


Drug Testing and Analysis | 2009

Combination of liquid-chromatography tandem mass spectrometry in different scan modes with human and chimeric mouse urine for the study of steroid metabolism

Oscar J. Pozo; Leen Lootens; Peter Van Eenoo; Koen Deventer; Philip Meuleman; Geert Leroux-Roels; Maria K. Parr; Wilhelm Schänzer; Frans Delbeke

Anabolic steroids are among the most frequently detected compounds in doping analysis. They are extensively metabolized and therefore an in-depth knowledge about steroid metabolism is needed. In this study, a liquid chromatography tandem mass spectometry (LC-MS/MS) method based on a precursor ion scan with a uPA-SCID mouse with humanized liver (a chimeric mouse) was explored for the detection of steroid metabolism. Methandienone was used as a model compound. The application of the precursor ion scan method in positive human samples and chimeric mice samples after methandienone administration allowed the detection of most steroid metabolites without any structural restriction. Three hitherto unreported metabolites were found using this approach. These metabolites were characterized using LC-MS/MS and feasible structures were proposed. The structure of one of them, 6-ene-epimethandienone, was confirmed by the synthesis of the reference compound. A selected reaction monitoring (SRM) method for the specific detection of all these metabolites has been developed. The application of this method to several human and chimeric mouse samples confirmed that more than 80% of the steroid metabolites were found in both samples. Only metabolites that are poorly detectable by LC-MS/MS were not detected in some urine samples. The metabolic nature of the unreported metabolites was also confirmed. A global strategy for the detection of steroid metabolites combining both human and chimeric mouse urine is proposed.


Drug Testing and Analysis | 2009

Steroid metabolism in chimeric mice with humanized liver.

Leen Lootens; Peter Van Eenoo; Philip Meuleman; Oscar J. Pozo; Pieter Van Renterghem; Geert Leroux-Roels; Frans Delbeke

Anabolic androgenic steroids are considered to be doping agents and are prohibited in sports. Their metabolism needs to be elucidated to allow for urinary detection by gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-tandem mass spectrometry (LC-MS/MS). Steroid metabolism was assessed using uPA(+/+) SCID mice with humanized livers (chimeric mice). This study presents the results of 19-norandrost-4-ene-3,17-dione (19-norAD) administration to these in vivo mice. As in humans, 19-norandrosterone and 19-noretiocholanolone are the major detectable metabolites of 19-norAD in the urine of chimeric mice.A summary is given of the metabolic pathways found in chimeric mice after administration of three model steroid compounds (methandienone, androst-4-ene-3,17-dione and 19-norandrost-4-ene-3,17-dione). From these studies we can conclude that all major metabolic pathways for anabolic steroids in humans are present in the chimeric mouse. It is hoped that, in future, this promising chimeric mouse model might assist the discovery of new and possible longer detectable metabolites of (designer) steroids.


Drug Metabolism and Disposition | 2009

The uPA(+/+)-SCID Mouse with Humanized Liver as a Model for in Vivo Metabolism of 4-Androstene-3,17-dione

Leen Lootens; Peter Van Eenoo; Philip Meuleman; Geert Leroux-Roels; Frans Delbeke

The metabolism in primary human hepatocyte cultures often deviates from that in clinical studies, which in turn are hampered by ethical constraints. Here the use of urokinase-type plasminogen activator-severe combined immunodeficiency [uPA(+/+)-SCID] mice transplanted with human hepatocytes was investigated as a model for in vivo metabolic studies. The urinary excretion profile after oral administration of 4-androstene-3,17-dione (AD) in chimeric mice was investigated by using gas chromatography-mass spectrometry detection and was compared with previously reported metabolites of AD in humans and cell cultures. Chimeric mice exhibited an AD metabolic profile similar to that of humans, showing androsterone and etiocholanolone as major metabolites. Several hydroxylated steroids were detected as minor metabolites in the chimeric mice compared with hepatocyte cultures. A significant correlation between the extent of liver replacement and the relative abundances of human-type metabolites was established. The results for AD showed that humanized liver uPA-SCID mice can serve as an alternative model for in vivo metabolism studies in humans. In the future, this model could possibly be used for other steroids or pharmaceutical compounds.


Biomedical Chromatography | 2014

Metabolism of methylstenbolone studied with human liver microsomes and the uPA⁺/⁺-SCID chimeric mouse model.

Lore Geldof; Leen Lootens; Michaël Polet; Daniel Eichner; Thane Campbell; Vinod Nair; Francesco Botrè; Philip Meuleman; Geert Leroux-Roels; Koen Deventer; Peter Van Eenoo

Anti-doping laboratories need to be aware of evolutions on the steroid market and elucidate steroid metabolism to identify markers of misuse. Owing to ethical considerations, in vivo and in vitro models are preferred to human excretion for nonpharmaceutical grade substances. In this study the chimeric mouse model and human liver microsomes (HLM) were used to elucidate the phase I metabolism of a new steroid product containing, according to the label, methylstenbolone. Analysis revealed the presence of both methylstenbolone and methasterone, a structurally closely related steroid. Via HPLC fraction collection, methylstenbolone was isolated and studied with both models. Using HLM, 10 mono-hydroxylated derivatives (U1-U10) and a still unidentified derivative of methylstenbolone (U13) were detected. In chimeric mouse urine only di-hydroxylated metabolites (U11-U12) were identified. Although closely related, neither methasterone nor its metabolites were detected after administration of isolated methylstenbolone. Administration of the steroid product resulted mainly in the detection of methasterone metabolites, which were similar to those already described in the literature. Methylstenbolone metabolites previously described were not detected. A GC-MS/MS multiple reaction monitoring method was developed to detect methylstenbolone misuse. In one out of three samples, previously tested positive for methasterone, methylstenbolone and U13 were additionally detected, indicating the applicability of the method.


Drug Testing and Analysis | 2017

In vitro metabolism study of a black market product containing SARM LGD-4033

Lore Geldof; Oscar J. Pozo; Leen Lootens; Wouter Morthier; Peter Van Eenoo; Koen Deventer

Anabolic agents are often used by athletes to enhance their performance. However, use of steroids leads to considerable side effects. Non-steroidal selective androgen receptor modulators (SARMs) are a novel class of substances that have not been approved so far but seem to have a more favourable anabolic/androgenic ratio than steroids and produce fewer side effects. Therefore the use of SARMs has been prohibited since 2008 by the World Anti-Doping Agency (WADA). Several of these SARMs have been detected on the black market. Metabolism studies are essential to identify the best urinary markers to ensure effective control of emerging substances by doping control laboratories. As black market products often contain non-pharmaceutical-grade substances, alternatives for human excretion studies are needed to elucidate the metabolism. A black market product labelled to contain the SARM LGD-4033 was purchased over the Internet. Purity verification of the black market product led to the detection of LGD-4033, without other contaminants. Human liver microsomes and S9 liver fractions were used to perform phase I and phase II (glucuronidation) metabolism studies. The samples of the in vitro metabolism studies were analyzed by gas chromatography-(tandem) mass spectrometry (GC-MS(/MS)), liquid chromatography-high resolution-tandem mass spectrometry (LC-(HR)MS/MS). LC-HRMS product ion scans allowed to identify typical fragment ions for the parent compound and to further determine metabolite structures. In total five metabolites were detected, all modified in the pyrrolidine ring of LGD-4033. The metabolic modifications ranged from hydroxylation combined with keto-formation (M1) or cleavage of the pyrrolidine ring (M2), hydroxylation and methylation (M3/M4) and dihydroxylation (M5). The parent compound and M2 were also detected as glucuronide-conjugates. Copyright


Steroids | 2009

Detection and structural investigation of metabolites of stanozolol in human urine by liquid chromatography tandem mass spectrometry.

Oscar J. Pozo; Peter Van Eenoo; Koen Deventer; Leen Lootens; Susana Grimalt; Juan V. Sancho; Félix Hernández; Philip Meuleman; Geert Leroux-Roels; Frans Delbeke

Collaboration


Dive into the Leen Lootens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge