Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leentje Jansen is active.

Publication


Featured researches published by Leentje Jansen.


Current Biology | 2010

A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity.

Bert De Rybel; Valya Vassileva; Boris Parizot; Marlies Demeulenaere; Wim Grunewald; Dominique Audenaert; Jelle Van Campenhout; Paul Overvoorde; Leentje Jansen; Steffen Vanneste; Barbara Möller; Michael Wilson; Tara J. Holman; Gert Van Isterdael; Géraldine Brunoud; Marnik Vuylsteke; Teva Vernoux; Lieven De Veylder; Dirk Inzé; Dolf Weijers; Malcolm J. Bennett; Tom Beeckman

BACKGROUND Lateral roots are formed at regular intervals along the main root by recurrent specification of founder cells. To date, the mechanism by which branching of the root system is controlled and founder cells become specified remains unknown. RESULTS Our study reports the identification of the auxin regulatory components and their target gene, GATA23, which control lateral root founder cell specification. Initially, a meta-analysis of lateral root-related transcriptomic data identified the GATA23 transcription factor. GATA23 is expressed specifically in xylem pole pericycle cells before the first asymmetric division and is correlated with oscillating auxin signaling maxima in the basal meristem. Also, functional studies revealed that GATA23 controls lateral root founder cell identity. Finally, we show that an Aux/IAA28-dependent auxin signaling mechanism in the basal meristem controls GATA23 expression. CONCLUSIONS We have identified the first molecular components that control lateral root founder cell identity in the Arabidopsis root. These include an IAA28-dependent auxin signaling module in the basal meristem region that regulates GATA23 expression and thereby lateral root founder cell specification and root branching patterns.


Chemistry & Biology | 2009

Chemical Inhibition of a Subset of Arabidopsis thaliana GSK3-like Kinases Activates Brassinosteroid Signaling

Bert De Rybel; Dominique Audenaert; Grégory Vert; Wilfried Rozhon; Juliane Mayerhofer; Frank Peelman; Silvie Coutuer; Tinneke Denayer; Leentje Jansen; Long Nguyen; Isabelle Vanhoutte; Gerrit T.S. Beemster; Kris Vleminckx; Claudia Jonak; Joanne Chory; Dirk Inzé; Eugenia Russinova; Tom Beeckman

Glycogen synthase kinase 3 (GSK3) is a key regulator in signaling pathways in both animals and plants. Three Arabidopsis thaliana GSK3s are shown to be related to brassinosteroid (BR) signaling. In a phenotype-based compound screen we identified bikinin, a small molecule that activates BR signaling downstream of the BR receptor. Bikinin directly binds the GSK3 BIN2 and acts as an ATP competitor. Furthermore, bikinin inhibits the activity of six other Arabidopsis GSK3s. Genome-wide transcript analyses demonstrate that simultaneous inhibition of seven GSK3s is sufficient to activate BR responses. Our data suggest that GSK3 inhibition is the sole activation mode of BR signaling and argues against GSK3-independent BR responses in Arabidopsis. The opportunity to generate multiple and conditional knockouts in key regulators in the BR signaling pathway by bikinin represents a useful tool to further unravel regulatory mechanisms.


Plant Physiology | 2007

Auxin Influx Activity Is Associated with Frankia Infection during Actinorhizal Nodule Formation in Casuarina glauca

Benjamin Péret; Ranjan Swarup; Leentje Jansen; Gaëlle Devos; Florence Auguy; Myriam Collin; Carole Santi; Valérie Hocher; Claudine Franche; Didier Bogusz; Malcolm J. Bennett; Laurent Laplaze

Plants from the Casuarinaceae family enter symbiosis with the actinomycete Frankia leading to the formation of nitrogen-fixing root nodules. We observed that application of the auxin influx inhibitor 1-naphtoxyacetic acid perturbs actinorhizal nodule formation. This suggests a potential role for auxin influx carriers in the infection process. We therefore isolated and characterized homologs of the auxin influx carrier (AUX1-LAX) genes in Casuarina glauca. Two members of this family were found to share high levels of deduced protein sequence identity with Arabidopsis (Arabidopsis thaliana) AUX-LAX proteins. Complementation of the Arabidopsis aux1 mutant revealed that one of them is functionally equivalent to AUX1 and was named CgAUX1. The spatial and temporal expression pattern of CgAUX1 promoter:β-glucuronidase reporter was analyzed in Casuarinaceae. We observed that CgAUX1 was expressed in plant cells infected by Frankia throughout the course of actinorhizal nodule formation. Our data suggest that auxin plays an important role during plant cell infection in actinorhizal symbioses.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis

Wim Grunewald; Ive De Smet; Daniel R. Lewis; Christian Löfke; Leentje Jansen; Geert Goeminne; Robin Vanden Bossche; Mansour Karimi; Bert De Rybel; Bartel Vanholme; Thomas Teichmann; Wout Boerjan; Marc Van Montagu; Godelieve Gheysen; Gloria K. Muday; Jiří Friml; Tom Beeckman

Gradients of the plant hormone auxin, which depend on its active intercellular transport, are crucial for the maintenance of root meristematic activity. This directional transport is largely orchestrated by a complex interaction of specific influx and efflux carriers that mediate the auxin flow into and out of cells, respectively. Besides these transport proteins, plant-specific polyphenolic compounds known as flavonols have been shown to act as endogenous regulators of auxin transport. However, only limited information is available on how flavonol synthesis is developmentally regulated. Using reduction-of-function and overexpression approaches in parallel, we demonstrate that the WRKY23 transcription factor is needed for proper root growth and development by stimulating the local biosynthesis of flavonols. The expression of WRKY23 itself is controlled by auxin through the AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 transcriptional response pathway. Our results suggest a model in which WRKY23 is part of a transcriptional feedback loop of auxin on its own transport through local regulation of flavonol biosynthesis.


Nature Chemical Biology | 2012

A role for the root cap in root branching revealed by the non-auxin probe naxillin

Bert De Rybel; Dominique Audenaert; Wei Xuan; Paul Overvoorde; Lucia C. Strader; Stefan Kepinski; Rebecca C. Hoye; Ronald G. Brisbois; Boris Parizot; Steffen Vanneste; Xing Liu; Alison D. Gilday; Ian A. Graham; Long Nguyen; Leentje Jansen; Maria Fransiska Njo; Dirk Inzé; Bonnie Bartel; Tom Beeckman

The acquisition of water and nutrients by plant roots is a fundamental aspect of agriculture and strongly depends on root architecture. Root branching and expansion of the root system is achieved through the development of lateral roots and is to a large extent controlled by the plant hormone auxin. However, the pleiotropic effects of auxin or auxin-like molecules on root systems complicate the study of lateral root development. Here we describe a small-molecule screen in Arabidopsis thaliana that identified naxillin as what is to our knowledge the first non-auxin-like molecule that promotes root branching. By using naxillin as a chemical tool, we identified a new function for root cap-specific conversion of the auxin precursor indole-3-butyric acid into the active auxin indole-3-acetic acid and uncovered the involvement of the root cap in root branching. Delivery of an auxin precursor in peripheral tissues such as the root cap might represent an important mechanism shaping root architecture.


Philosophical Transactions of the Royal Society B | 2012

Phloem-associated auxin response maxima determine radial positioning of lateral roots in maize

Leentje Jansen; Ianto Roberts; Riet De Rycke; Tom Beeckman

In Arabidopsis thaliana, lateral-root-forming competence of pericycle cells is associated with their position at the xylem poles and depends on the establishment of protoxylem-localized auxin response maxima. In maize, our histological analyses revealed an interruption of the pericycle at the xylem poles, and confirmed the earlier reported proto-phloem-specific lateral root initiation. Phloem-pole pericycle cells were larger and had thinner cell walls compared with the other pericycle cells, highlighting the heterogeneous character of the maize root pericycle. A maize DR5::RFP marker line demonstrated the presence of auxin response maxima in differentiating xylem cells at the root tip and in cells surrounding the proto-phloem vessels. Chemical inhibition of auxin transport indicated that the establishment of the phloem-localized auxin response maxima is crucial for lateral root formation in maize, because in their absence, random divisions of pericycle and endodermis cells occurred, not resulting in organogenesis. These data hint at an evolutionarily conserved mechanism, in which the establishment of vascular auxin response maxima is required to trigger cells in the flanking outer tissue layer for lateral root initiation. It further indicates that lateral root initiation is not dependent on cellular specification or differentiation of the type of vascular tissue.


Plant Biotechnology Journal | 2013

Comparative transcriptomics as a tool for the identification of root branching genes in maize

Leentje Jansen; Jens Hollunder; Ianto Roberts; Cristian Forestan; Philippe Fonteyne; Charlotte Van Quickenborne; Rui-Guang Zhen; Bryan McKersie; Boris Parizot; Tom Beeckman

The root system is fundamental for plant development, is crucial for overall plant growth and is recently being recognized as the key for future crop productivity improvement. A major determinant of root system architecture is the initiation of lateral roots. While knowledge of the genetic and molecular mechanisms regulating lateral root initiation has mainly been achieved in the dicotyledonous plant Arabidopsis thaliana, only scarce data are available for major crop species, generally monocotyledonous plants. The existence of both similarities and differences at the morphological and anatomical level between plant species from both clades raises the question whether regulation of lateral root initiation may or may not be conserved through evolution. Here, we performed a targeted genome-wide transcriptome analysis during lateral root initiation both in primary and in adventitious roots of Zea mays and found evidence for the existence of common transcriptional regulation. Further, based on a comparative analysis with Arabidopsis transcriptome data, a core of genes putatively conserved across angiosperms could be identified. Therefore, it is plausible that common regulatory mechanisms for lateral root initiation are at play in maize and Arabidopsis, a finding that might encourage the extrapolation of knowledge obtained in Arabidopsis to crop species at the level of root system architecture.


Methods of Molecular Biology | 2013

Inducible System for Lateral Roots in Arabidopsis thaliana and Maize

Leentje Jansen; Boris Parizot; Tom Beeckman

The study of biological processes contributing to plant growth can be complicated by the small number of cells involved and by the brief and sudden appearance of some crucial developmental steps. Given such troublesome circumstances, methods to monitor the timing or to increase the number of concerned cells can be of great advantage to researchers. Lateral root initiation is a process taking place endogenously in a discrete number of cells of the parent root. It represents the onset of the formation of a new meristem and provides the below ground part of the plant the ability to react on environmental conditions such as nutrient and water availability. Insights into the underlying mechanisms of this developmental event can be of major importance to provide means of improving tolerance to nutrient and water deficient conditions. The exact timing and site of lateral root initiation are, however, impossible to predict, hampering exhaustive studies of the sequence of events directing this process. Here, we present a method to synchronize the induction of lateral roots in Arabidopsis thaliana and maize. By initially preventing the formation of laterals in young seedlings and subsequently inducing lateral root initiation, this method not only allows controlling the process in time but also enlarges significantly the population of cells involved, opening up the way to systems biology approaches.


Journal of Visualized Experiments | 2016

Lateral Root Inducible System in Arabidopsis and Maize.

Hanne Crombez; Ianto Roberts; Nick Vangheluwe; Hans Motte; Leentje Jansen; Tom Beeckman; Boris Parizot

Lateral root development contributes significantly to the root system, and hence is crucial for plant growth. The study of lateral root initiation is however tedious, because it occurs only in a few cells inside the root and in an unpredictable manner. To circumvent this problem, a Lateral Root Inducible System (LRIS) has been developed. By treating seedlings consecutively with an auxin transport inhibitor and a synthetic auxin, highly controlled lateral root initiation occurs synchronously in the primary root, allowing abundant sampling of a desired developmental stage. The LRIS has first been developed for Arabidopsis thaliana, but can be applied to other plants as well. Accordingly, it has been adapted for use in maize (Zea mays). A detailed overview of the different steps of the LRIS in both plants is given. The combination of this system with comparative transcriptomics made it possible to identify functional homologs of Arabidopsis lateral root initiation genes in other species as illustrated here for the CYCLIN B1;1 (CYCB1;1) cell cycle gene in maize. Finally, the principles that need to be taken into account when an LRIS is developed for other plant species are discussed.


Plant roots : the hidden half | 2013

Lateral root development

Leentje Jansen; Marlies Demeulenaere; Tom Beeckman

Collaboration


Dive into the Leentje Jansen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge