Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lehe Tan is active.

Publication


Featured researches published by Lehe Tan.


Food Chemistry | 2013

The effect of cryogenic grinding and hammer milling on the flavour quality of ground pepper (Piper nigrum L.)

Hong Liu; Fankui Zeng; Qinghuang Wang; Shiyi Ou; Lehe Tan; Fenglin Gu

In this study, we compared the effects of cryogenic grinding and hammer milling on the flavour attributes of black, white, and green pepper. The flavour attributes were analysed using headspace solid-phase micro-extraction (HS-SPME) and gas chromatography-mass spectrometry (GC/MS), sensory evaluation and electronic nose (e-nose) analysis. Cryogenic grinding resulted in minimal damage to the colour, flavour, and sensory attributes of the spices. Cryogenic grinding was also better than hammer milling at preserving the main potent aroma constituents, but the concentrations of the main aroma constituents were dramatically reduced after storing the samples at 4 °C for 6 months. Pattern matching performed by the e-nose further supported our sensory and instrumental findings. Overall, cryogenic grinding was superior to hammer milling for preserving the sensory properties and flavour attributes of pepper without significantly affecting its quality. However, we found that the flavour quality of ground pepper was reduced during storage.


Foods | 2013

Comparison of Cocoa Beans from China, Indonesia and Papua New Guinea

Fenglin Gu; Lehe Tan; Huasong Wu; Yiming Fang; Fei Xu; Zhong Chu; Qinghuang Wang

A survey on five kinds of cocoa beans from new cocoa planting countries was conducted to analyze each kind’s basic quality. The average bean weight and butter content of Hainan cocoa beans were the lowest, at less than 1.1 g, and 39.24% to 43.44%, respectively. Cocoa beans from Indonesia where shown to be about 8.0% and 9.0% higher in average bean weight and butter content, respectively, than that of Papua New Guinea and about 20.0% and 25.0% higher in average bean weight and butter content than Chinese dried beans, respectively. The average total polyphenolic content ranged from 81.22 mg/10 g to 301.01 mg/10 g. The Hainan 2011 sample had the highest total polyphenolic content, followed by the unfermented sample from Indonesia and the Papua New Guinea sample. The polyphenolic levels found in the Hainan 2010 sample were 123.61 mg/10 g and lower than the other three samples, but the Indonesian fermented sample had the lowest total polyphenolic content of 81.22 mg/10 g. The average total amino acid content ranged from 11.58 g/100 g to 18.17 g/100 g. The total amino acid content was the highest in the Indonesian unfermented sample, followed by the Hainan 2011 sample and the Papua New Guinea sample. The levels found in the Hainan 2010 sample were lower; the Indonesian fermented sample had the lowest total amino acid content.


Molecules | 2012

Optimization of Enzymatic Process for Vanillin Extraction Using Response Surface Methodology

Fenglin Gu; Fei Xu; Lehe Tan; Huasong Wu; Zhong Chu; Qinghuang Wang

Vanillin was extracted from vanilla beans using pretreatment with cellulase to produce enzymatic hydrolysis, and response surface methodology (RSM) was applied to optimize the processing parameters of this extraction. The effects of heating time, enzyme quantity and temperature on enzymatic extraction of vanillin were evaluated. Extraction yield (mg/g) was used as the response value. The results revealed that the increase in heating time and the increase in enzyme quantity (within certain ranges) were associated with an enhancement of extraction yield, and that the optimal conditions for vanillin extraction were: Heating time 6 h, temperature 60 °C and enzyme quantity 33.5 mL. Calculated from the final polynomial functions, the optimal response of vanillin extraction yield was 7.62 mg/g. The predicted results for optimal reaction conditions were in good agreement with experimental values.


Molecules | 2015

Characterization of Fatty Acid, Amino Acid and Volatile Compound Compositions and Bioactive Components of Seven Coffee (Coffea robusta) Cultivars Grown in Hainan Province, China

Wenjiang Dong; Lehe Tan; Jianping Zhao; Rongsuo Hu; Minquan Lu

Compositions of fatty acid, amino acids, and volatile compound were investigated in green coffee beans of seven cultivars of Coffea robusta grown in Hainan Province, China. The chlorogenic acids, trigonelline, caffeine, total lipid, and total protein contents as well as color parameters were measured. Chemometric techniques, principal component analysis (PCA), hierarchical cluster analysis (HCA), and analysis of one-way variance (ANOVA) were performed on the complete data set to reveal chemical differences among all cultivars and identify markers characteristic of a particular botanical origin of the coffee. The major fatty acids of coffee were linoleic acid, palmitic acid, oleic acid, and arachic acid. Leucine (0.84 g/100 g DW), lysine (0.63 g/100 g DW), and arginine (0.61 g/100 g DW) were the predominant essential amino acids (EAAs) in the coffee samples. Seventy-nine volatile compounds were identified and semi-quantified by HS-SPME/GC-MS. PCA of the complete data matrix demonstrated that there were significant differences among all cultivars, HCA supported the results of PCA and achieved a satisfactory classification performance.


Food Chemistry | 2013

Analysis of the blackening of green pepper (Piper nigrum Linnaeus) berries

Fenglin Gu; Lehe Tan; Huasong Wu; Yiming Fang; Qinghuang Wang

This paper investigates polyphenol oxidase (PPO) activity, reduced weight percentage after sun drying, and the changes in colour and appearance of green pepper (Piper nigrum Linnaeus) berries after blanching and sun drying. The results show that the degree of reduced weight percentage and browning in green pepper berries after blanching for 10 min is greater at 100°C than at 90 and 80°C. Moreover, the samples blanched at 100°C for 10 min had the fastest water loss, but the lowest PPO activity. Thus, the PPO enzymatic oxidation of polyphenols might not be the only reason for the browning of green pepper berries. This result is significantly different from that of Variyar, Pendharkar, Banerjeea, and Bandyopadhyay (1988) and therefore deserves further study.


Food Chemistry | 2017

Differentiation of Chinese robusta coffees according to species, using a combined electronic nose and tongue, with the aid of chemometrics

Wenjiang Dong; Jianping Zhao; Rongsuo Hu; Yunping Dong; Lehe Tan

Electronic nose and tongue sensors and chemometric multivariate analysis were applied to characterize and classify 7 Chinese robusta coffee cultivars with different roasting degrees. Analytical data were obtained from 126 samples of roasted coffee beans distributed in the Hainan Province of China. Physicochemical qualities, such as the pH, titratable acidity (TA), total soluble solids (TSS), total solids (TS), and TSS/TA ratio, were determined by wet chemistry methods. Data fusion strategies were investigated to improve the performance of models relative to the performance of a single technique. Clear classification of all the studied coffee samples was achieved by principal component analysis, K-nearest neighbour analysis, partial least squares discriminant analysis, and a back-propagation artificial neural network. Quantitative models were established between the sensor responses and the reference physicochemical qualities, using partial least squares regression (PLSR). The PLSR model with a fusion data set was considered the best model for determining the quality parameters.


Food Chemistry | 2017

Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans

Wenjiang Dong; Rongsuo Hu; Zhong Chu; Jianping Zhao; Lehe Tan

This study investigated the effect of different drying techniques, namely, room-temperature drying (RTD), solar drying (SD), heat-pump drying (HPD), hot-air drying (HAD), and freeze drying (FD), on bioactive components, fatty acid composition, and the volatile compound profile of robusta coffee beans. The data showed that FD was an effective method to preserve fat, organic acids, and monounsaturated fatty acids. In contrast, HAD was ideal for retaining polyunsaturated fatty acids and amino acids. Sixty-two volatile compounds were identified in the differently dried coffee beans, representing 90% of the volatile compounds. HPD of the coffee beans produced the largest number of volatiles, whereas FD resulted in the highest volatile content. A principal component analysis demonstrated a close relationship between the HPD, SD, and RTD methods whereas the FD and HAD methods were significantly different. Overall, the results provide a basis for potential application to other similar thermal sensitive materials.


AMB Express | 2017

Comparative metabolomics in vanilla pod and vanilla bean revealing the biosynthesis of vanillin during the curing process of vanilla

Fenglin Gu; Yonggan Chen; Yinghua Hong; Yiming Fang; Lehe Tan

High-performance liquid chromatography–mass spectrometry (LC–MS) was used for comprehensive metabolomic fingerprinting of vanilla fruits prepared from the curing process. In this study, the metabolic changes of vanilla pods and vanilla beans were characterized using MS-based metabolomics to elucidate the biosynthesis of vanillin. The vanilla pods were significantly different from vanilla beans. Seven pathways of vanillin biosynthesis were constructed, namely, glucovanillin, glucose, cresol, capsaicin, vanillyl alcohol, tyrosine, and phenylalanine pathways. Investigations demonstrated that glucose, cresol, capsaicin, and vanillyl alcohol pathway were detected in a wide range of distribution in microbial metabolism. Thus, microorganisms might have participated in vanillin biosynthesis during vanilla curing. Furthermore, the ion strength of glucovanillin was stable, which indicated that glucovanillin only participated in the vanillin biosynthesis during the curing of vanilla.


Molecules | 2014

Volatile Organic Compound Emissions from Different Stages of Cananga odorata Flower Development

Xiao-Wei Qin; Chaoyun Hao; Shuzhen He; Gang Wu; Lehe Tan; Fei Xu; Rong-Suo Hu

Headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to identify the volatile organic compounds (VOCs) of the different flower development stages of Cananga odorata for the evaluation of floral volatile polymorphism as a basis to determine the best time of harvest. Electronic nose results, coupled with discriminant factor analysis, suggested that emitted odors varied in different C. odorata flower development stages, including the bud, display-petal, initial-flowering, full-flowering, end-flowering, wilted-flower, and dried flower stages. The first two discriminant factors explained 97.52% of total system variance. Ninety-two compounds were detected over the flower life, and the mean Bray–Curtis similarity value was 52.45% among different flower development stages. A high level of volatile polymorphism was observed during flower development. The VOCs were largely grouped as hydrocarbons, esters, alcohols, aldehydes, phenols, acids, ketones, and ethers, and the main compound was β-caryophyllene (15.05%–33.30%). Other identified compounds were β-cubebene, d-germacrene, benzyl benzoate, and α-cubebene. Moreover, large numbers of VOCs were detected at intermediate times of flower development, and more hydrocarbons, esters, and alcohols were identified in the full-flowering stage. The full-flowering stage may be the most suitable period for C. odorata flower harvest.


Molecules | 2015

Contribution of Bacillus Isolates to the Flavor Profiles of Vanilla Beans Assessed through Aroma Analysis and Chemometrics

Fenglin Gu; Yonggan Chen; Yiming Fang; Guiping Wu; Lehe Tan

Colonizing Bacillus in vanilla (Vanilla planifolia Andrews) beans is involved in glucovanillin hydrolysis and vanillin formation during conventional curing. The flavor profiles of vanilla beans under Bacillus-assisted curing were analyzed through gas chromatography-mass spectrometry, electronic nose, and quantitative sensory analysis. The flavor profiles were analytically compared among the vanilla beans under Bacillus-assisted curing, conventional curing, and non-microorganism-assisted curing. Vanilla beans added with Bacillus vanillea XY18 and Bacillus subtilis XY20 contained higher vanillin (3.58% ± 0.05% and 3.48% ± 0.10%, respectively) than vanilla beans that underwent non-microorganism-assisted curing and conventional curing (3.09% ± 0.14% and 3.21% ± 0.15%, respectively). Forty-two volatiles were identified from endogenous vanilla metabolism. Five other compounds were identified from exogenous Bacillus metabolism. Electronic nose data confirmed that vanilla flavors produced through the different curing processes were easily distinguished. Quantitative sensory analysis confirmed that Bacillus-assisted curing increased vanillin production without generating any unpleasant sensory attribute. Partial least squares regression further provided a correlation model of different measurements. Overall, we comparatively analyzed the flavor profiles of vanilla beans under Bacillus-assisted curing, indirectly demonstrated the mechanism of vanilla flavor formation by microbes.

Collaboration


Dive into the Lehe Tan's collaboration.

Top Co-Authors

Avatar

Jianping Zhao

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Fei Xu

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Rongsuo Hu

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Wenjiang Dong

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Fenglin Gu

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Qinghuang Wang

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Yonggan Chen

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chaoyun Hao

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Fankui Zeng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hong Liu

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge