Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lei Bu is active.

Publication


Featured researches published by Lei Bu.


Nature | 2008

A myocardial lineage derives from Tbx18 epicardial cells

Chen-Leng Cai; Jody C. Martin; Yunfu Sun; Li Cui; Lianchun Wang; Kunfu Ouyang; Lei Yang; Lei Bu; Xingqun Liang; Xiaoxue Zhang; William B. Stallcup; Christopher P. Denton; Andrew D. McCulloch; Ju Chen; Sylvia M. Evans

Understanding the origins and roles of cardiac progenitor cells is important for elucidating the pathogenesis of congenital and acquired heart diseases. Moreover, manipulation of cardiac myocyte progenitors has potential for cell-based repair strategies for various myocardial disorders. Here we report the identification in mouse of a previously unknown cardiac myocyte lineage that derives from the proepicardial organ. These progenitor cells, which express the T-box transcription factor Tbx18, migrate onto the outer cardiac surface to form the epicardium, and then make a substantial contribution to myocytes in the ventricular septum and the atrial and ventricular walls. Tbx18-expressing cardiac progenitors also give rise to cardiac fibroblasts and coronary smooth muscle cells. The pluripotency of Tbx18 proepicardial cells provides a theoretical framework for applying these progenitors to effect cardiac repair and regeneration.


Proceedings of the National Academy of Sciences of the United States of America | 2007

β-Catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis

Lizhu Lin; Li Cui; Wenlai Zhou; Daniel Dufort; Xiaoxue Zhang; Chen-Leng Cai; Lei Bu; Lei Yang; Jody L. Martin; Rolf Kemler; Michael G. Rosenfeld; Ju Chen; Sylvia M. Evans

Recent studies have demonstrated that the LIM homeodomain transcription factor Islet1 (Isl1) marks pluripotent cardiovascular progenitor cells and is required for proliferation, survival, and migration of recently defined second heart field progenitors. Factors that are upstream of Isl1 in cardiovascular progenitors have not yet been defined. Here we demonstrate that β-catenin is required for Isl1 expression in cardiac progenitors, directly regulating the Isl1 promoter. Ablation of β-catenin in Isl1-expressing progenitors disrupts multiple aspects of cardiogenesis, resulting in embryonic lethality at E13. β-Catenin is also required upstream of a number of genes required for pharyngeal arch, outflow tract, and/or atrial septal morphogenesis, including Tbx2, Tbx3, Wnt11, Shh, and Pitx2. Our findings demonstrate that β-catenin signaling regulates proliferation and survival of cardiac progenitors.


Development | 2005

T-box genes coordinate regional rates of proliferation and regional specification during cardiogenesis.

Chen-Leng Cai; Wenlai Zhou; Lei Yang; Lei Bu; Yibing Qyang; Xiaoxue Zhang; Xiaodong Li; Michael G. Rosenfeld; Ju Chen; Sylvia M. Evans

Mutations in T-box genes are the cause of several congenital diseases and are implicated in cancer. Tbx20-null mice exhibit severely hypoplastic hearts and express Tbx2, which is normally restricted to outflow tract and atrioventricular canal, throughout the heart. Tbx20 mutant hearts closely resemble those seen in mice overexpressing Tbx2 in myocardium, suggesting that upregulation of Tbx2 can largely account for the cardiac phenotype in Tbx20-null mice. We provide evidence that Tbx2 is a direct target for repression by Tbx20 in developing heart. We have also found that Tbx2 directly binds to the Nmyc1 promoter in developing heart, and can repress expression of the Nmyc1 promoter in transient transfection studies. Repression of Nmyc1 (N-myc) by aberrantly regulated Tbx2 can account in part for the observed cardiac hypoplasia in Tbx20 mutants. Nmyc1 is required for growth and development of multiple organs, including the heart, and overexpression of Nmyc1 is associated with childhood tumors. Despite its clinical relevance, the factors that regulate Nmyc1 expression during development are unknown. Our data present a paradigm by which T-box proteins regulate regional differences in Nmyc1 expression and proliferation to effect organ morphogenesis. We present a model whereby Tbx2 directly represses Nmyc1 in outflow tract and atrioventricular canal of the developing heart, resulting in relatively low proliferation. In chamber myocardium, Tbx20 represses Tbx2, preventing repression of Nmyc1 and resulting in relatively high proliferation. In addition to its role in regulating regional proliferation, we have found that Tbx20 regulates expression of a number of genes that specify regional identity within the heart, thereby coordinating these two important aspects of organ development.


Cell Research | 2013

Driving vascular endothelial cell fate of human multipotent Isl1+ heart progenitors with VEGF modified mRNA

Kathy O. Lui; Lior Zangi; Eduardo A. Silva; Lei Bu; Makoto Sahara; Ronald A. Li; David J. Mooney; Kenneth R. Chien

Distinct families of multipotent heart progenitors play a central role in the generation of diverse cardiac, smooth muscle and endothelial cell lineages during mammalian cardiogenesis. The identification of precise paracrine signals that drive the cell-fate decision of these multipotent progenitors, and the development of novel approaches to deliver these signals in vivo, are critical steps towards unlocking their regenerative therapeutic potential. Herein, we have identified a family of human cardiac endothelial intermediates located in outflow tract of the early human fetal hearts (OFT-ECs), characterized by coexpression of Isl1 and CD144/vWF. By comparing angiocrine factors expressed by the human OFT-ECs and non-cardiac ECs, vascular endothelial growth factor (VEGF)-A was identified as the most abundantly expressed factor, and clonal assays documented its ability to drive endothelial specification of human embryonic stem cell (ESC)-derived Isl1+ progenitors in a VEGF receptor-dependent manner. Human Isl1-ECs (endothelial cells differentiated from hESC-derived ISL1+ progenitors) resemble OFT-ECs in terms of expression of the cardiac endothelial progenitor- and endocardial cell-specific genes, confirming their organ specificity. To determine whether VEGF-A might serve as an in vivo cell-fate switch for human ESC-derived Isl1-ECs, we established a novel approach using chemically modified mRNA as a platform for transient, yet highly efficient expression of paracrine factors in cardiovascular progenitors. Overexpression of VEGF-A promotes not only the endothelial specification but also engraftment, proliferation and survival (reduced apoptosis) of the human Isl1+ progenitors in vivo. The large-scale derivation of cardiac-specific human Isl1-ECs from human pluripotent stem cells, coupled with the ability to drive endothelial specification, engraftment, and survival following transplantation, suggest a novel strategy for vascular regeneration in the heart.


Cardiovascular Research | 2017

Multilevel analyses of SCN5A mutations in arrhythmogenic right ventricular dysplasia/cardiomyopathy suggest non-canonical mechanisms for disease pathogenesis.

Anneline S.J.M. te Riele; Esperanza Agullo-Pascual; Cynthia A. James; Alejandra Leo-Macias; Marina Cerrone; Mingliang Zhang; Xianming Lin; Bin Lin; Eli Rothenberg; Nara Sobreira; Nuria Amat-Alarcon; Roos F. Marsman; Brittney Murray; Crystal Tichnell; Jeroen F. van der Heijden; Dennis Dooijes; Toon A.B. van Veen; Harikrishna Tandri; Steven J. Fowler; Richard N.W. Hauer; Gordon F. Tomaselli; Maarten P. van den Berg; Matthew R.G. Taylor; Francesca Brun; Gianfranco Sinagra; Arthur A.M. Wilde; Luisa Mestroni; Connie R. Bezzina; Hugh Calkins; J. Peter van Tintelen

Aims Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy (ARVD/C) is often associated with desmosomal mutations. Recent studies suggest an interaction between the desmosome and sodium channel protein Nav1.5. We aimed to determine the prevalence and biophysical properties of mutations in SCN5A (the gene encoding Nav1.5) in ARVD/C. Methods and results We performed whole-exome sequencing in six ARVD/C patients (33% male, 38.2 ± 12.1 years) without a desmosomal mutation. We found a rare missense variant (p.Arg1898His; R1898H) in SCN5A in one patient. We generated induced pluripotent stem cell-derived cardiomyocytes (hIPSC-CMs) from the patient’s peripheral blood mononuclear cells. The variant was then corrected (R1898R) using Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 technology, allowing us to study the impact of the R1898H substitution in the same cellular background. Whole-cell patch clamping revealed a 36% reduction in peak sodium current (P = 0.002); super-resolution fluorescence microscopy showed reduced abundance of NaV1.5 (P = 0.005) and N-Cadherin (P = 0.026) clusters at the intercalated disc. Subsequently, we sequenced SCN5A in an additional 281 ARVD/C patients (60% male, 34.8 ± 13.7 years, 52% desmosomal mutation-carriers). Five (1.8%) subjects harboured a putatively pathogenic SCN5A variant (p.Tyr416Cys, p.Leu729del, p.Arg1623Ter, p.Ser1787Asn, and p.Val2016Met). SCN5A variants were associated with prolonged QRS duration (119 ± 15 vs. 94 ± 14 ms, P < 0.01) and all SCN5A variant carriers had major structural abnormalities on cardiac imaging. Conclusions Almost 2% of ARVD/C patients harbour rare SCN5A variants. For one of these variants, we demonstrated reduced sodium current, Nav1.5 and N-Cadherin clusters at junctional sites. This suggests that Nav1.5 is in a functional complex with adhesion molecules, and reveals potential non-canonical mechanisms by which Nav1.5 dysfunction causes cardiomyopathy.


Journal of Clinical Investigation | 2015

Transcription factor ISL1 is essential for pacemaker development and function

Xingqun Liang; Qingquan Zhang; Paola Cattaneo; Shaowei Zhuang; Xiaohui Gong; Nathanael J. Spann; Cizhong Jiang; Xinkai Cao; Xiaodong Zhao; Xiaoli Zhang; Lei Bu; Gang Wang; H.S. Vincent Chen; Tao Zhuang; Jie Yan; Peng Geng; Lina Luo; Indroneal Banerjee; Yi-Han Chen; Christopher K. Glass; Alexander C. Zambon; Ju Chen; Yunfu Sun; Sylvia M. Evans

The sinoatrial node (SAN) maintains a rhythmic heartbeat; therefore, a better understanding of factors that drive SAN development and function is crucial to generation of potential therapies, such as biological pacemakers, for sinus arrhythmias. Here, we determined that the LIM homeodomain transcription factor ISL1 plays a key role in survival, proliferation, and function of pacemaker cells throughout development. Analysis of several Isl1 mutant mouse lines, including animals harboring an SAN-specific Isl1 deletion, revealed that ISL1 within SAN is a requirement for early embryonic viability. RNA-sequencing (RNA-seq) analyses of FACS-purified cells from ISL1-deficient SANs revealed that a number of genes critical for SAN function, including those encoding transcription factors and ion channels, were downstream of ISL1. Chromatin immunoprecipitation assays performed with anti-ISL1 antibodies and chromatin extracts from FACS-purified SAN cells demonstrated that ISL1 directly binds genomic regions within several genes required for normal pacemaker function, including subunits of the L-type calcium channel, Ank2, and Tbx3. Other genes implicated in abnormal heart rhythm in humans were also direct ISL1 targets. Together, our results demonstrate that ISL1 regulates approximately one-third of SAN-specific genes, indicate that a combination of ISL1 and other SAN transcription factors could be utilized to generate pacemaker cells, and suggest ISL1 mutations may underlie sick sinus syndrome.


Cell Research | 2014

N-cadherin prevents the premature differentiation of anterior heart field progenitors in the pharyngeal mesodermal microenvironment

Boon Seng Soh; Kristina Buac; Huansheng Xu; Edward Li; Shi-Yan Ng; Hao Wu; Jolanta Chmielowiec; Xin Jiang; Lei Bu; Ronald A. Li; Chad A. Cowan; Kenneth R. Chien

The cardiac progenitor cells (CPCs) in the anterior heart field (AHF) are located in the pharyngeal mesoderm (PM), where they expand, migrate and eventually differentiate into major cell types found in the heart, including cardiomyocytes. The mechanisms by which these progenitors are able to expand within the PM microenvironment without premature differentiation remain largely unknown. Through in silico data mining, genetic loss-of-function studies, and in vivo genetic rescue studies, we identified N-cadherin and interaction with canonical Wnt signals as a critical component of the microenvironment that facilitates the expansion of AHF-CPCs in the PM. CPCs in N-cadherin mutant embryos were observed to be less proliferative and undergo premature differentiation in the PM. Notably, the phenotype of N-cadherin deficiency could be partially rescued by activating Wnt signaling, suggesting a delicate functional interaction between the adhesion role of N-cadherin and Wnt signaling in the early PM microenvironment. This study suggests a new mechanism for the early renewal of AHF progenitors where N-cadherin provides additional adhesion for progenitor cells in the PM, thereby allowing Wnt paracrine signals to expand the cells without premature differentiation.


Nature Communications | 2016

Endothelin-1 supports clonal derivation and expansion of cardiovascular progenitors derived from human embryonic stem cells

Boon Seng Soh; Shi-Yan Ng; Hao Wu; Kristina Buac; Joo-Hye C. Park; Xiaojun Lian; Jiejia Xu; Kylie S. Foo; Ulrika Felldin; Xiaobing He; Massimo Nichane; Henry Yang; Lei Bu; Ronald A. Li; Bing Lim; Kenneth R. Chien

Coronary arteriogenesis is a central step in cardiogenesis, requiring coordinated generation and integration of endothelial cell and vascular smooth muscle cells. At present, it is unclear whether the cell fate programme of cardiac progenitors to generate complex muscular or vascular structures is entirely cell autonomous. Here we demonstrate the intrinsic ability of vascular progenitors to develop and self-organize into cardiac tissues by clonally isolating and expanding second heart field cardiovascular progenitors using WNT3A and endothelin-1 (EDN1) human recombinant proteins. Progenitor clones undergo long-term expansion and differentiate primarily into endothelial and smooth muscle cell lineages in vitro, and contribute extensively to coronary-like vessels in vivo, forming a functional human–mouse chimeric circulatory system. Our study identifies EDN1 as a key factor towards the generation and clonal derivation of ISL1+ vascular intermediates, and demonstrates the intrinsic cell-autonomous nature of these progenitors to differentiate and self-organize into functional vasculatures in vivo.


Molecular therapy. Nucleic acids | 2017

One-Step Biallelic and Scarless Correction of a β-Thalassemia Mutation in Patient-Specific iPSCs without Drug Selection

Yali Liu; Yi Yang; Xiangjin Kang; Bin Lin; Qian Yu; Bing Song; Ge Gao; Yaoyong Chen; Xiaofang Sun; Xiaoping Li; Lei Bu; Yong Fan

Monogenic disorders (MGDs), which are caused by single gene mutations, have a serious effect on human health. Among these, β-thalassemia (β-thal) represents one of the most common hereditary hematological diseases caused by mutations in the human hemoglobin β (HBB) gene. The technologies of induced pluripotent stem cells (iPSCs) and genetic correction provide insights into the treatments for MGDs, including β-thal. However, traditional approaches for correcting mutations have a low efficiency and leave a residual footprint, which leads to some safety concerns in clinical applications. As a proof of concept, we utilized single-strand oligodeoxynucleotides (ssODNs), high-fidelity CRISPR/Cas9 nuclease, and small molecules to achieve a seamless correction of the β-41/42 (TCTT) deletion mutation in β thalassemia patient-specific iPSCs with remarkable efficiency. Additionally, off-target analysis and whole-exome sequencing results revealed that corrected cells exhibited a minimal mutational load and no off-target mutagenesis. When differentiated into hematopoietic progenitor cells (HPCs) and then further to erythroblasts, the genetically corrected cells expressed normal β-globin transcripts. Our studies provide the most efficient and safe approach for the genetic correction of the β-41/42 (TCTT) deletion in iPSCs for further potential cell therapy of β-thal, which represents a potential therapeutic avenue for the gene correction of MGD-associated mutants in patient-specific iPSCs.


Current Opinion in Biotechnology | 2017

Cardiac stem cells for myocardial regeneration: promising but not ready for prime time

Joshua M. Lader; Maxine Stachel; Lei Bu

Remarkable strides have been made in the treatment of ischemic heart disease in decades. As the initial loss of cardiomyocytes associated with myocardial infarction serves as an impetus for myocardial remodeling, the ability to replace these cells with healthy counterparts would represent an effective treatment for many forms of cardiovascular disease. The discovery of cardiac stem cells (that can differentiate into multiple lineages) highlighted the possibility for development of cell-based therapeutics to achieve this ultimate goal. Recent research features cardiac stem cell maintenance, proliferation, and differentiation, as well as direct reprogramming of various somatic cells into cardiomyocytes, all within the context of the holy grail of regeneration of the injured heart. Much work remains to be done, but the future looks bright!

Collaboration


Dive into the Lei Bu's collaboration.

Top Co-Authors

Avatar

Chen-Leng Cai

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianyun Yan

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Ju Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Lu Zhang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Nishat Sultana

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald A. Li

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge