Lei Luo
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lei Luo.
Remote Sensing | 2014
Lei Luo; Xinyuan Wang; Huadong Guo; Chuansheng Liu; Jie Liu; Li Li; Xiaocui Du; Guoquan Qian
Qanats in northern Xinjiang of China provide valuable information for agriculturists and anthropologists who seek fundamental understanding of the distribution of qanat water supply systems with regard to water resource utilization, the development of oasis agriculture, and eventually climate change. Only the tops of qanat shafts (TQSs), indicating the course of the qanats, can be observed from space, and their circular archaeological traces can also be seen in very high resolution imagery in Google Earth. The small size of the TQSs, vast search regions, and degraded features make manually extracting them from remote sensing images difficult and costly. This paper proposes an automated TQS extraction method that adopts mathematical morphological processing methods before an edge detecting module is used in the circular Hough transform approach. The accuracy assessment criteria for the proposed method include: (i) extraction percentage (E) = 95.9%, branch factor (B) = 0 and quality percentage (Q) = 95.9% in Site 1; and (ii) extraction percentage (E) = 83.4%, branch factor (B) = 0.058 and quality percentage (Q) = 79.5% in Site 2. Compared with the standard circular Hough transform, the quality percentages (Q) of our proposed method were improved to 95.9% and 79.5% from 86.3% and 65.8% in test sites 1 and 2, respectively. The results demonstrate that wide-area discovery and mapping can be performed much more effectively based on our proposed method.
International Journal of Digital Earth | 2017
Lei Luo; Xinyuan Wang; Jie Liu; Huadong Guo; Xin Zong; Wei Ji; Hui Cao
ABSTRACT This study mainly focuses on revealing an ancient water landscape at the Longcheng site in the northern Chaohu Lake Basin using very high-resolution (VHR) GeoEye-1 imagery. First, prior to classification, the GeoEye-1 image was processed following atmospheric and geometric correction. The supervised classification was carried out in order to show the land-cover situation in the Longcheng area. The overall classification accuracy was 89.98%, with a kappa coefficient of 0.87. The moat system around the city walls was discovered by using rule-based object-oriented segmentation of the postclassified image, and the other walls of ancient Longcheng were manually identified from the pansharpened VHR GeoEye-1 image. Finally, a map of the ancient water landscape containing the ancient city, wall and moat at the Longcheng site was produced. This paper demonstrates that VHR remote sensing has the ability to uncover an ancient water landscape and provide new insights for archaeological and paleoenvironmental studies.
Frontiers of Earth Science in China | 2013
Lei Luo; Lingli Mu; Xinyuan Wang; Chao Li; Wei Ji; Jinjin Zhao; Heng Cai
Craters, one of the most significant features of the lunar surface, have been widely researched because they offer us the relative age of the surface unit as well as crucial geological information. Research on crater detection algorithms (CDAs) of the Moon and other planetary bodies has concentrated on detecting them from imagery data, but the computational cost of detecting large craters using images makes these CDAs impractical. This paper presents a new approach to crater detection that utilizes a digital elevation model instead of images; this enables fully automatic global detection of large craters. Craters were delineated by terrain attributes, and then thresholding maps of terrain attributes were used to transform topographic data into a binary image, finally craters were detected by using the Hough Transform from the binary image. By using the proposed algorithm, we produced a catalog of all craters ⩾10 km in diameter on the lunar surface and analyzed their distribution and population characteristics.
Remote Sensing | 2018
Lei Luo; Xinyuan Wang; Rosa Lasaponara; Bo Xiang; Jing Zhen; Lanwei Zhu; Ruixia Yang; Decheng Liu; Chuansheng Liu
This paper describes the use of the Chinese Gaofen-1 (GF-1) satellite imagery to automatically extract tertiary Linear Archaeological Traces of Tuntian Irrigation Canals (LATTICs) located in the Miran site. The site is adjacent to the ancient Loulan Kingdom at the eastern margin of the Taklimakan Desert in western China. GF-1 data were processed following atmospheric and geometric correction, and spectral analyses were carried out for multispectral data. The low values produced by spectral separability index (SSI) indicate that it is difficult to distinguish buried tertiary LATTICs from similar backgrounds using spectral signatures. Thus, based on the textual characteristics of high-resolution GF-1 panchromatic data, this paper proposes an automatic approach that combines joint morphological bottom and hat transformation with a Canny edge operator. The operator was improved by adding stages of geometric filtering and gradient vector direction analysis. Finally, the detected edges of tertiary LATTICs were extracted using the GIS-based draw tool and converted into shapefiles for archaeological mapping within a GIS environment. The proposed automatic approach was verified with an average accuracy of 95.76% for 754 tertiary LATTICs in the entire Miran site and compared with previous manual interpretation results. The results indicate that GF-1 VHR PAN imagery can successfully uncover the ancient tuntian agricultural landscape. Moreover, the proposed method can be generalized and applied to extract linear archaeological traces such as soil and crop marks in other geographic locations.
IOP Conference Series: Earth and Environmental Science | 2014
Lei Luo; Xinyuan Wang; Heng Cai
Combining analysis of 3S (RS, GIS and GPS) and historical materials (historical records, ancient map and academic and literary writings) allows mapping of the Keriya Paleoriver of Southern Xinjiang, NW China. Keriya Paleoriver, one of the ancient Four Green Corridors which passes through the Taklimakan Desert from south to north in the Tarim Basin, recorded changes of the climate-environment in the ancient Silk Road of the region. According to the archaeological data, historical materials and paleoclimates information, its eco-environment and climate have had great changes since the 1.09Ma B.P., especially during the last 2,000 years, which has led to many famous ancient cities to be abandoned and the route of the ancient Silk Road to be moved southward. Using RS (optical and radar imagery), GIS (mapping and spatial analysis) and GPS (study area investigation), we mapped a major paleodrainage system of Keriya River, which have linked the Kunlun Mountains to the Tienshan Mountains through the Taklimakan Desert, possibly as far back as the early Pleistocene. This study illustrates the capability of the 3S and historical materials, in mapping the Keriya Paleoriver drainage networks and archaeological study on the ancient Silk Road.
Frontiers of Earth Science in China | 2018
Li Li; Xinyuan Wang; Lei Luo; Yanchuang Zhao; Xin Zong; Nabil Bachagha
In recent years, wind energy has been a fastgrowing alternative source of electrical power due to its sustainability. In this paper, the wind energy potential over the Gobi Desert in Northwest China is assessed at the patch scale using geographic information systems (GIS). Data on land cover, topography, and administrative boundaries and 11 years (2000‒2010) of wind speed measurements were collected and used to map and estimate the region’s wind energy potential. Based on the results, it was found that continuous regions of geographical potential (GeoP) are located in the middle of the research area (RA), with scattered areas of similar GeoP found in other regions. The results also show that the technical potential (TecP) levels are about 1.72‒2.67 times (2.20 times on average) higher than the actual levels. It was found that the GeoP patches can be divided into four classes: unsuitable regions, suitable regions, more suitable regions, and the most suitable regions. The GeoP estimation shows that 0.41 billion kW of wind energy are potentially available in the RA. The suitable regions account for 25.49%, the more suitable regions 24.45%, and the most suitable regions for more than half of the RA. It is also shown that Xinjiang and Gansu are more suitable for wind power development than Ningxia.
Journal of Archaeological Science | 2014
Lei Luo; Xinyuan Wang; Chuansheng Liu; Huadong Guo; Xiaocui Du
international congress on image and signal processing | 2011
Lei Luo; Xinyuan Wang; Wei Ji; Chao Li
Journal of Cultural Heritage | 2017
Lei Luo; Xinyuan Wang; Jie Liu; Huadong Guo; Rosa Lasaponara; Wei Ji; Chuansheng Liu
Sustainability | 2018
Jing Zhen; Xinyuan Wang; Qingkai Meng; Jingwei Song; Ying Liao; Bo Xiang; Huadong Guo; Chuansheng Liu; Ruixia Yang; Lei Luo