Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lei Tian is active.

Publication


Featured researches published by Lei Tian.


Archives of Microbiology | 2017

Root-associated bacterial diversities of Oryza rufipogon and Oryza sativa and their influencing environmental factors

Lei Tian; Xue Zhou; Lina Ma; Shangqi Xu; Fahad Nasir; Chunjie Tian

Oryza rufipogon is the ancestor of human-cultivated Oryza sativa. However, little is known about the difference between the root-associated microorganisms of O. rufipogon and O. sativa. In this study, the root-associated bacteria of O. rufipogon, Leersia hexandra, and O. sativa from different latitudes in China were studied by DGGE analysis. Their bacterial community structures were compared by principal component analysis. The relationship between root-associated bacteria and soil properties was explored by canonical correspondence analysis. The relationships of glomalin-related soil protein (GRSP) content, soluble sugar content, proline content of the plant, and bacterial diversity indices of their root-associated microorganisms were also investigated. We found both broad-spectrum and host-specific bacteria, and the similarity, diversity and abundance indices of O. rufipogon and L. hexandra were higher than O. sativa root-associated bacteria. However, even living in the same habitat, O. rufipogon and L. hexandra selected different root-associated bacteria. Microbial composition was primarily correlated with available N, P, and K and the annual precipitation. We also found a positive correlation between the soluble sugar content of the plant and GRSP content of the root soil. The above results indicated that the community structure of root-associated bacteria differs between wild rice and cultivated rice. Human activity and the natural selection of the host plants shaped the differences, consistent with our hypothesis.


Seminars in Cell & Developmental Biology | 2018

Current understanding of pattern-triggered immunity and hormone-mediated defense in rice (Oryza sativa) in response to Magnaporthe oryzae infection

Fahad Nasir; Lei Tian; Chunling Chang; Xiujun Li; Yingzhi Gao; Lam-Son Phan Tran; Chunjie Tian

Plant pathogens represent a huge threat to world food security, affecting both crop production and quality. Although significant progress has been made in improving plant immunity by expressing key, defense-related genes and proteins from different species in transgenic crops, a challenge remains for molecular breeders and biotechnologists to successfully engineer elite, transgenic crop varieties with improved resistance against critical plant pathogens. Upon pathogen attack, including infection of rice (Oryza sativa) by Magnaporthe oryzae, host plants initiate a complex defense response at molecular, biochemical and physiological levels. Plants perceive the presence of pathogens by detecting microbe-associated molecular patterns via pattern recognition receptors, and initiate a first line of innate immunity, the so-called pattern-triggered immunity (PTI). This results in a series of downstream defense responses, including the production of hormones, which collectively function to fend off pathogen attacks. A variety of studies have demonstrated that many genes are involved in the defense response of rice to M. oryzae. In this review, the current understanding of mechanisms that improve rice defense response to M. oryzae will be discussed, with special focus on PTI and the phytohormones ethylene, jasmonic acid, salicylic acid, and abscisic acid; as well as on the mediation of defense signaling mechanisms by PTI and these hormones. Potential target genes that may serve as promising candidates for improving rice immunity against M. oryzae will also be discussed.


Rice | 2018

Comparative analysis of the root transcriptomes of cultivated and wild rice varieties in response to Magnaporthe oryzae infection revealed both common and species-specific pathogen responses

Lei Tian; Shaohua Shi; Fahad Nasir; Chunling Chang; Weiqiang Li; Lam-Son Phan Tran; Chunjie Tian

BackgroundMagnaporthe oryzae, the causal fungus of rice blast disease, negatively impacts global rice production. Wild rice (Oryza rufipogon), a relative of cultivated rice (O. sativa), possesses unique attributes that enable it to resist pathogen invasion. Although wild rice represents a major resource for disease resistance, relative to current cultivated rice varieties, no prior studies have compared the immune and transcriptional responses in the roots of wild and cultivated rice to M. oryzae.ResultsIn this study, we showed that M. oryzae could act as a typical root-infecting pathogen in rice, in addition to its common infection of leaves, and wild rice roots were more resistant to M. oryzae than cultivated rice roots. Next, we compared the differential responses of wild and cultivated rice roots to M. oryzae using RNA-sequencing (RNA-seq) to unravel the molecular mechanisms underlying the enhanced resistance of the wild rice roots. Results indicated that both common and genotype-specific mechanisms exist in both wild and cultivated rice that are associated with resistance to M. oryzae. In wild rice, resistance mechanisms were associated with lipid metabolism, WRKY transcription factors, chitinase activities, jasmonic acid, ethylene, lignin, and phenylpropanoid and diterpenoid metabolism; while the pathogen responses in cultivated rice were mainly associated with phenylpropanoid, flavone and wax metabolism. Although modulations in primary metabolism and phenylpropanoid synthesis were common to both cultivated and wild rice, the modulation of secondary metabolism related to phenylpropanoid synthesis was associated with lignin synthesis in wild rice and flavone synthesis in cultivated rice. Interestingly, while the expression of fatty acid and starch metabolism-related genes was altered in both wild and cultivated rice in response to the pathogen, changes in lipid acid synthesis and lipid acid degradation were dominant in cultivated and wild rice, respectively.ConclusionsThe response mechanisms to M. oryzae were more complex in wild rice than what was observed in cultivated rice. Therefore, this study may have practical implications for controlling M. oryzae in rice plantings and will provide useful information for incorporating and assessing disease resistance to M. oryzae in rice breeding programs.


Journal of Ginseng Research | 2017

The effect of Glomus intraradices on the physiological properties of Panax ginseng and on rhizospheric microbial diversity

Lei Tian; Shaohua Shi; Lina Ma; Xue Zhou; Shasha Luo; Jianfeng Zhang; Baohui Lu; Chunjie Tian

Background Glomus intraradices is a species of arbuscular mycorrhizal fungi that, as an obligate endomycorrhiza, can form mutually beneficial associations with plants. Panax ginseng is a popular traditional Chinese medicine; however, problems associated with ginseng planting, such as pesticide residues, reduce the ginseng quality. Methods In this experiment, we studied the effect of inoculating G. intraradices on several physiological properties and microbial communities of ginseng. UV-Visible Spectrum method was used to detect physical properties. Denaturing gradient gel electrophoresis method was used to analyze microbial communities. Results The results indicated that inoculation with G. intraradices can improve the colonization rate of lateral ginseng roots, increase the levels of monomeric and total ginsenosides, and improve root activity as well as polyphenol oxidase and catalase activities. We also studied the bacterial and fungal communities in ginseng rhizospheric soil. In our study, G. intraradices inoculation improved the abundance and Shannon diversity of bacteria, whereas fungi showed a reciprocal effect. Furthermore, we found that G. intraradices inoculation might increase some beneficial bacterial species and decreased pathogenic fungi in rhizospheric soil of ginseng. Conclusion Our results showed that G. intraradices can benefit ginseng planting which may have some instructive and practical significance for planting ginseng in farmland.


Scientific Reports | 2017

Microbial communities in peatlands along a chronosequence on the Sanjiang Plain, China

Xue Zhou; Zhenqing Zhang; Lei Tian; Xiujun Li; Chunjie Tian

Microbial communities play crucial roles in the global carbon cycle, particularly in peatland ecosystems under climate change. The peatlands of the Sanjiang Plain could be highly vulnerable to global warming because they are mainly located at the southern limit of northern peatlands. In this study, the alpha diversity and composition of bacterial communities in three different minerotrophic fens along a chronosequence were investigated. We captured a rich microbial community that included many rare operational taxonomic units (OTUs) but was dominated by a few bacterial classes that have frequently been detected in other peatland ecosystems. Notably, a large diversity of methanotrophs affiliated with Alpha- and Gammaproteobacteria was also detected. Bacterial alpha diversity and composition varied as a function of peat depth and its associated physical-chemical properties, such as total carbon, total nitrogen, pH and bulk density. We also found that bacterial community turnover (beta diversity) to be significantly correlated with soil age, whereas bacterial alpha diversity was not.


PLOS ONE | 2017

Fungal communities in ancient peatlands developed from different periods in the Sanjiang Plain, China

Zhenqing Zhang; Xue Zhou; Lei Tian; Lina Ma; Shasha Luo; Jianfeng Zhang; Xiujun Li; Chunjie Tian

Peatlands in the Sanjiang Plain could be more vulnerable to global warming because they are located at the southernmost boundary of northern peatlands. Unlike bacteria, fungi are often overlooked, even though they play important roles in substance circulation in the peatland ecosystems. Accordingly, it is imperative that we deepen our understanding of fungal community structure and diversity in the peatlands. In this study, high-throughput Illumina sequencing was used to study the fungal communities in three fens in the Sanjiang Plain, located at the southern edge of northern peatlands. Peat soil was collected from the three fens which developed during different periods. A total of 463,198 fungal ITS sequences were obtained, and these sequences were classified into at least six phyla, 21 classes, more than 60 orders and over 200 genera. The fungal community structures were distinct in the three sites and were dominated by Ascomycota and Basidiomycota. However, there were no significant differences between these three fens in any α-diversity index (p > 0.05). Soil age and the carbon (C) accumulation rate, as well as total carbon (TC), total nitrogen (TN), C/N ratio, and bulk density were found to be closely related to the abundance of several dominant fungal taxa. We captured a rich fungal community and confirmed that the dominant taxa were those which were frequently detected in other northern peatlands. Soil age and the C accumulation rate were found to play important roles in shaping the fungal community structure.


Journal of Basic Microbiology | 2017

Rhizospheric fungi and their link with the nitrogen‐fixing Frankia harbored in host plant Hippophae rhamnoides L.

Xue Zhou; Lei Tian; Jianfeng Zhang; Lina Ma; Xiujun Li; Chunjie Tian

Sea buckthorn (Hippophae rhamnoides L.) is a pioneer plant used for land reclamation and an appropriate material for studying the interactions of symbiotic microorganisms because of its nitrogen‐fixing root nodules and mycorrhiza. We used high‐throughput sequencing to reveal the diversities and community structures of rhizospheric fungi and their link with nitrogen‐fixing Frankia harbored in sea buckthorn collected along an altitude gradient from the Qinghai Tibet Plateau to interior areas. We found that the fungal diversities and compositions varied between different sites. Ascomycota, Basidiomycota, and Zygomycota were the dominant phyla. The distribution of sea buckthorn rhizospheric fungi was driven by both environmental factors and the geographic distance. Among all examined soil characteristics, altitude, AP, and pH were found to have significant (p < 0.05) effect on the rhizospheric fungal community. The rhizospheric fungal communities became more distinct as the distance increased. Moreover, co‐inertia analysis identified significant co‐structures between Frankia and AMF communities in the rhizosphere of sea buckthorn. We conclude that at the large scale, there are certain linkages between nitrogen‐fixing bacteria and the AMF expressed in the distributional pattern.


Fungal Genomics & Biology | 2017

Fungal Communities in Ancient Peatlands at Sanjiang Plain, China

Xue Zhou; Zhenqing Zhang; Lei Tian; Chunjie Tian

There is a growing concern that the on-going and future global warming would change the C cycling in northern peatland ecosystems. The peatlands in the Sanjiang plain could be more vulnerable to global warming because they are mainly located at the most southern regions of northern peatlands. Compared with bacteria, fungi are often overlooked; even they also play important roles on the substance circulation in the peatland ecosystems. Accordingly, it is imperative that we deepen our understanding on fungal community structure and diversity in the peatlands. In this study, the relative abundance, distribution, and composition of fungal communities in three different minerotrophic fens distributed in the Sanjiang Plain, was investigated by next-generation sequencing. A total of 533,323 fungal ITS sequences were obtained and these sequences were classified into at least 6 phyla, 21 classes, more than 60 orders and over 200 genera, suggesting a rich fungal community in this ecosystem. The dominated taxa were confirmed to be frequently detected in other northern peatland ecosystems. In comparison with pH, the TC, TN, C/N ratio, and bulk density were determined to be more important environmental parameters shaping fungal community structure. Additionally, for the first time, we found the distribution patterns of several abundant fungal taxa were closely related to the soil age and C accumulation rate.


Plant Physiology and Biochemistry | 2018

Impact of domestication on the evolution of rhizomicrobiome of rice in response to the presence of Magnaporthe oryzae

Shaohua Shi; Lei Tian; Fahad Nasir; Xiujun Li; Weiqiang Li; Lam-Son Phan Tran; Chunjie Tian

The rhizomicrobiome plays a key role in suppressing soil-borne plant diseases. It remains unclear if crop domestication has altered the rhizomicrobiome and reduced the resistance of domesticated crops to pathogens. To investigate this question, the pathogenic fungus Magnaporthe oryzae was administered to the rhizosphere of plants of cultivated and wild rice to compare the impact of the fungal pathogen on their rhizomicrobiome. The analysis of the results indicated that the presence of M. oryzae affected the community structure and diversity of the rhizomicrobiome of both cultivated and wild rice species. Bacterial and fungal α- and β-diversity of the rhizosphere of cultivated rice were altered more significantly than in wild rice. Furthermore, the abundance of the introduced pathogen was significantly lower in the rhizosphere of wild rice, while the relative abundance of putatively beneficial bacterial and fungal taxa was higher, relative to cultivated rice. These results suggest that the rhizomicrobiome of cultivated rice was more sensitive to the introduction of the fungal pathogen and more easily disturbed than the rhizosphere community of its wild relative. Additionally, a correlation analysis of microbiome and root transcriptome data, obtained under pathogenic and non-pathogenic conditions, indicated that fungal members of the Glomeromycota are important for promoting phenylpropanoid and lignin syntheses in wild rice, which plays a role in resisting M. oryzae infection. The identified differences between the responses of the rhizomicrobiomes of cultivated and wild rice to M. oryzae may provide information that can be used in developing novel strategies to control soil-borne pathogens, which include reconstructing the rhizomicrobiome of domesticated crops to be similar to their wild relatives.


Microbiology | 2018

Community Structure of Rhizomicrobiomes in Four Medicinal Herbs and Its Implication on Growth Management

Shaohua Shi; Lei Tian; Lina Ma; Chaoguang Tian

Medicinal plants are the basic materials of traditional Chinese medicine. Soil characteristics and microbial contribution play important roles in the growth and product quality of medicinal plants, but the link between them in the rhizosphere of medicinal plants has been overlooked. Accordingly, Mentha haplocalyx, Perilla frutescens, Glycyrrhiza uralensis, and Astragalus membranaceus, four plants used in traditional Chinese medicines, were investigated in this study in order to elucidate bacterial and arbuscular mycorrhizal fungal (AMF) diversity in the rhizosphere and its possible association with soil quality. DGGE-based 16S rRNA and 18S rRNA gene sequencing results indicated that the diversity of both bacteria and AMF in Glycyrrhiza uralensis and Astragalus membranaceus was significantly higher than those in Mentha haplocalyx and Perilla frutescens, suggesting that medicinal plants have different preferences even under the same conditions. In addition, enzymatic activities and nutrition were enhanced in the rhizospheric soil of Mentha haplocalyx and Perilla frutescens, and the correlation among AMF diversity, soil enzymatic activities and nutrition was confirmed using RDA analysis. These results suggest the potential to grow medicinal plants with a reasonable rotation or intercrop in order to maintain long-term continuous soil development.

Collaboration


Dive into the Lei Tian's collaboration.

Top Co-Authors

Avatar

Chunjie Tian

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiujun Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lina Ma

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shaohua Shi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fahad Nasir

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Xue Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jianfeng Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shangqi Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge